[

N
-

=

S
R

08~-65D V3.0
USER'S MANUAL
PRELIMINARY COPY

OCTOBER, 1978

(C) Ohio Scientific, Inc.

VISR s

0S5-65D V3.0 User's Manual
Table of Contents

Features
Introduction
Using the System in BASIC

Menu-0riented DiSKS v een e osoeesoanansossanansrsens

Development Disks

TRACR preocaTIONS BASTC and the Immediate Mode
Loading, Saving and Running BASIC Programs

N}

p—

~:§Floppy Disk Formats ..eveeeeennn

Utilizing Named Program Files
Mini-Floppy Disk Dir:zctory
Full Size Floppy Disk Directory

Saving a BASIC Program On Disk Via a Named’ Flle
Loading a BASIC Program From Disk By File Name

Deleting Files
Backing Up Files

Modifying BEXEC*®* and Applications Disksco...
Advanced Features of 0S-65D V3.0 9-Digit BASIC

BASIC I/0 Handling
BASIC to DOS Interface

Data Files in BASIC e e e e

Sequential Data Files

Steps to Using Sequential Data Files

Random Data Files

Steps to Using Random Data Files

Using the Assembler/Editor
Using the Extended Monitor
System Overview

System Architectureo...

Memory Map
Utility Programs

Create File Utility

Change Parameter Utility
Delete File Utility
Directory Utility

Sorted Directory Utility

ooooooooooooooooooooo

Random Access File List Utility

Rename File Utility
Sector Directory Utility

Sequential File Lister Utility

Trace Utility
File Zeroing Utility
05-65D V3.0 Kernel

Changing I/0 Distributor Flags..

Transferring Disk Sectors
Executing a Machine Code File
Using Indirect Files

Kernal Utilities vueee e enenenees

Initializing Diskettes

——Copying Diskettes

05-65D V3.0 for the I-P
I-P Pico DOS

Appendix
0S-65D V3.0 User's Guide

Manual (C) 1978 OHIO SCIENTIFIC,

65D V3.0 (C) 1978 OHIO SCIENTIFIC,
9-Digit BASIC (C) MICROSOFT, INC.

INC.
INC.

Features

*Convenient to use "conventional" disk operating system

*available for all OSI 6502 mini-floppy and g" floppy
configurations

*Supports 9-Digit BASIC, Assembler/Editor, Extended Machine
Code Monitor and transient code programs |

*Utilizes named files and manually allocated files inter-

changeably

*Features -convenient to use BASIC oriented sequential and

random access data files

*Supports up to four floppy drives

*Supports 430 serial, 550 serial (16 port) parallel printer,
cassette and memory I/0 as well as serial console and/or
keyboard with video console :

*Can be directly converted to a locked menu-oriented system

for end users

*Contains all 08-65D V2.0 features as a subset and can read
version 2 files and assign file names to them

*Supports multiple variable length disk buffers and variable

length sectors on diskette

£

L

yey

b
Ll

oy,

—

Introduction

0S~-65D Version 3.

0 is a convenient to use disk operating

system which fully supports Microsoft's 9-Digit Extended BASIC,

a 6502 resident Assembler/Lditor, 6502 Extended Machine Code

Monitor and various I/O devices. The operating system is

available for all Ohio Scientific mini-floppy and full size

floppy disk configurations. The system is convenient for

beginnefs to use via the programming language BASIC, It

supports writing programs in BASIC, storing programs on disk,

recalling programs and reading and writing sequential and

~ random access data files in BASIC. The system also fully

supports assembler language programming for the 6502. In

conjunction with its assembler and machine code capabilities,

it offers an extensive machine code debugging aid, the Extended |

Monitor. The system is also well suited to utilize machine code

subroutines in conjunction with BASIC programs., It has several

advanced features such as variable sector length and the capability

of its stand-alone disk operating system kernel to support other

languages,

This manual will
fundamental operation
and advancing to more
to permit the user to

BASIC language level,

cover the above features starting with
of the system for the BASIC programmer
detailed levels. The manual is written
fully utilize the computer system at the

without ever having to read those portions

of the manual covering assembler level operation. For the user's

convenience, a condensed User's Guide that covers all features o.

0S-65D Version 3.0 is

(
included at the end of this manual.

Using the System in BASIC

Before using any floppy diskettes, please carefully read]
all the warnings about the care and handling of diskettes and .
the floppy disk system in the main operator's manual accompany-
ing your computer. Once you have the system properly connected -
and powered up, place the 65D Version 3.0 diskette, label side]

up, in the "A" drive of your disk system. There are basically

two typés of 65D 3.0 diskettes: Development disks and menu-

oriented Applications disks. Both boot up directly in the

~

programming language BASIC and execute a BASIC program called

e
=

E

BEXEC*., With either type of diskette, the proper procedure is

g

as follows:

1. Place the diskette into the disk drive.

2. Close the drive‘door. {
3. Depress the reset button in front of the CPU oxr the
break key on the computer's keyboard depending on 5?
the model of the computer you have. it
4. Check to be sure the shift lock key is in the locked g
or down position on polled keyboard systems. A

5. Depress the "D" key. This selects the floppy disk -
bootstrap which will load the operating system from N
disk into memory. A series of messages will appear

on the screen.

Menu-Oriented Disks

Ii’?”

Applications disks display a menu when booted which is a list'd

of numbers and program descriptions, and finally, a message such

as "YOUR SELECTION?". To select the desired program, you simply

e}

type the number corresponding to the desired selection and depress

By re o

b
the RETURN key. The operating system will then load that progra'&\L
. i <)
and execute it, i

13

PP,

Note that all inputé you type into the computer must be
followed by pressing the RETURN key. This is referred to as
"line-oriented input". It offers a tremendous advantage over
character oriented input in that until the RETURN key is pressed,
typing errors can be corrected by merely typing a delete
character after the error, then typing the correct character.

(On various keyboards the delete character (hex code 5F) may be

a shift-0, underline or back arrow.) lOn video terminals with
backspace capability the erroneous character is then erased and

the cursor is left at the proper position for entry of the correct
character. On printing terminals that have backspéce capability
the erroneous character obviously cannot be erased. However, the
print head is left correctly positioned for entry of the correct
character. On terminals without backspace capability’the cursorﬂr
print head is not repositioned but the delete is performed per-
mitting simple correction of errors. As many delete key strokes

as needed can be used at any time. For example, if two characters
were typed in error, two delete key strokes can be used té eliminate
them., In addition to the single character delete, a control-U key
entry may be used to delete a whole line. This is done by pressing
the U key while holding the CTRL key down.

Menu-oriented operating systems provide operational messages
as you go so it is usually not necessary to refer to this manual
while operating an Applications disk. It is possible to gain
access to the internal software of an Applications disk by typing
in the proper response when the menu is displayed. This feature

{

will be covered later, after the user has gained a familiarity

with Development disks.

Development Disks ‘ ﬁ

Development disks are specifically for users who wish to

write their own programs. Development disks contain utility

programs which will provide assistance in developing software
instead of providing end user application programs. A Development ;é
T

disk will boot in with a message such as "0S-65D Version 3.0"

followed by some other messages and a selection of possible
functions, ultimately asking the question "FUNCTION?". The

functions in this menu are utility programs which will be covered Ej

later.

BASIC and the Immediate Mode

The first objective in mastering 65D Version 3.0 is to learn
to utilize the programming language BASIC in the immediate mode
and to write simple programs, This is. accomplished by selecting <\

a Development disk, booting it in by typing D and answering

1~
y

LA

"UNLOCK" to "FUNCTION?". (Note that the RETURN key must be hit at

the completion of each line of input.) This operation initializes

E.;;’Lv44-.§

BASIC, prepares it for end user programming and returns the user

=

w2
ot g
-4

to the BASIC immediate mode displaying the prompter "OK"., At

this point, the computer will accept almost all standard BASIC

Lo

statements in the immediate mode. The immediate mode can be used
in conjunction with any standard BASIC textbook for mastering the
concepts of the programming language BASIC. The following is a
short introduction to programming in BASIC and some sample programs
that can be run. Once you have mastered elementary programming in -
BASIC, proceed to the next section which covers loading BASIC

programs from disk and storing BASIC programs on disk.

PROGRAM EXAMPLE

The following program example demonstrates some of the
‘more fundamental concepts of BASIC. This program may be
entered when the computer replies "OK"., Enter the program
exactly as it appears, including all punctuation, etc.

1¢ PRINT "HELLO! I'M YOUR NEW COMPUTER!" <é?TUR§>>

2¢ PRINT @TURL}
3¢ END @TU®

Now, Cheqk the program to be sure you have entered it
correctly. Type in the word LIST and ‘<§ETUR§>>. This
instructs the computer to print out the program as stored

within the computer's memory.

L1ST <RETURN>

To have the computer execute ("run") the program, type in:
RUN(<§ETU§§>
The computer should then érint:

HELLO! I'M YOUR NEW COMPUTER!

The BASIC language makes it easy to modify (edit) a
program. Errors within a line may be corrected by retyping
the line, Additional statements may be incorporated into a
program by sequencing the new line numbers within the existing
program. The following additions to the example program

demonstrate these editing concepts.

5 FOR X=¢ TO 3§ <{ETUR1\>
25 NEXT X <RETURY>
To examine the program as amended, type LIST <§?TUR§>>.

To execute the new program, type RUN <E¢TUR§> .

The computer operating manual contains a more in-depth

.
d

[S

discussion of BASIC, several sample programs and a reference

manual on BASIC. (

AR

You may also wish to refer to one of thé many BASIC g

programming texts now available for an in-depth study of BASIC,

3

e
B

TIPS

£
i

sy
AR |

B
o
:a.il

3

ey
B e
[

B

I
K,_ iyl

‘,
-
g

-

Loading, Saving and Running BASIC Programs

0S-65D Version 3.0 allows the user to LOAD, SAVE and RUN
BASIC programs specified by starting track number or by up to
a six character file name. This unique approach allows maximum
versatility in that the user can allow the disk system to locate
the space for files or can manually svecify exactly where files
appear on the disk, as desired.

Floppy Disk Formats

Floppy disks are divided into concentric circles called
tracks. Each track can be further divided into entities called
"sectors". An 8" floppy disk has 77 usable tracks. Mini-floppy
disks have from 35 to 40 usable tracks depending upon the gquality
of the read/writé head in the floppy diskette drive and the
quality of the floppy media. Tracks are numbered from 0 up such
that the 5th physical track on the disk is track 4. .0S-65D f/
Version 3.0 stores BASIC programs starting on traék boundaries
and uses an integer number of tracks to store each program.

That is, it storés programs on a single sector per track. Pro-
grams that are multiple tracks in length are stored on contiguous
tracks, that is, if a program is 3 tracks long and is specified
to be stored on track 40, it is, in fact, stored on track 40, 41
and 42. oOn 8" floppies, approximately 2800 bytes or characters
are stored per track. On mini-floppies, approximately 2000 bytes
or characters are stored per track.

Not all of the diskette is available to store user programs.
Part of the diskette is occupied by the operating system, the

language processors such as BASIC and the Assembler, utility progrea!

and possibly other end user programs and data files.. It is
necessary to maintain a directory of‘what is on the disk both
to be able to select desired information from the disk and to
know what portions of the disk are available for future storage,
For the moment, we will bypass the methods of obtaining dir-
ectories and proceed to storing a program on diskette and
recalling it.

First, type a short program into the computer in BASIC
and RUN it. Then, follow the procedure below. Note, when
you type EXIT, the system will report the number of tracks
required to store the program. On g" floppies store the
program on track 73; on 5" floppies store the program on track

34.

Procedure for Saving a Program on Disk by Track Number

A. After the program has been entered:

1., Type EXIT.(By now you should be remembering to hit.
the RETURN key after each line of input.)

2. BASIC will report number of tracks needed for storage,
Then the DOS prompter A* will appear.

3, Type PUT (track number) where (track number) = 73 for
the example on 8" floppies and 34 on 5" floppies.

WARNING: PUT (track number) will place new programs
right over old files on the disk, so be sure

that the tracks you specify don't contain
other important software (in the example,

they don't) .
4, Type RETURN BASIC or RE BA in shorthand.

5. The BASIC prompter "OK" should appear with the program
still in memnory.

Type NEW to clear the program from memory and reinitialize
the work space. Now follow the procedure on the next page,

specifying track 73 for 8" floppies and track 34 on a 5" floppy.

o~

Procedure for Loading a Program from Disk by Track Number

1. Type EXIT
2. Ignore the track size report BASIC puts out

3. Type LOAD (track number) where (track number) is
the starting track of the desired program

4, Type RE BA

5. The BASIC prompter "OK" should appear with the
program in memory

6. RUN or LIST the program as desired

Thé preceding process could be considered tedious for
bringing in programs to be run. There is a much shorter way
of bringing in programs and running them. This can be demonstrated
by typing NEW to initialize the work space and then typing the
statement RUN (track number) where (track number) is 73 or 34,
This brings the program into the work space and automatically

starts executing it.

.10~

Utilizing Named Program Jiles

It is somewhat difficult to have to remember the locations

of all programs by track number. For example, it is easy to

forget whether a program you want is on track 72 or track 27.

Therefore, it is desirable to be able to utilize a name for a

program instead of its track number.

To utilize named files on the disk, utility programs which
are present on the diskette must be used. These programs are
written in BASIC and include DIR, CREATE and DELETE. There are
more utility programs, but these are the only ones necessary
for saving and recalling named BASIC programs. DIR is the
directory program. This program, when executed, lists or prints

out a directory of the disk files by name and track utilization.

Disk files can include BASIC programs, BASIC data files, assembler
source code; machine code and other special files such as the
utilities programs. To obtain a disk directory, simple type
RUN"DIR'while in the BASIC immediate mode. Or type DIR directly
to the question"FUNCTION?" when the system is booted. The
directory program then asks if you want line printer output in-
stead of console output. It then follows with the directory of

file names and track ranges. The following two listings show

the standard directory for mini-floppy and 8" floppy Development

disks.

»

-11-

-t

£ oG
ekl d

Bl

ey
e

o

Mini-Floppy Disk Directory

0S-65D VERSION 3.0
—~= DIRECTORY --

FILE NAME CK RANGE
0S-65D3 g-12
BEXEC* 14-14

. CHANGE 15-16
\\\ CREATE 17-19
. DELETE 20-2¢
IR 21-21
22-22

23-24

25-25

26-26

! 27-28

29-29

\\\\ 3-31

\ 32-32

-12~

Full Size Floppy Disk Directory j

BT
i
as-65D WERSION 3. @ s
~— DIRECTORY -- “
FILE WAME TRACK RANGE i
as65D2 @ - 8
BEXKEC* 9 — 9 ?
CHANGE 1@ - 4@ k.
CREATE 13 - 14
DELETE 15 -~ 45 : &
DIR 16 - 16
DIRSRT 417 - 47
RANLST 18 - 49 B
RENAME 26 - 20 ’ , ,
SECDIR 21 - 24 ‘
SEQLST 22 - &3
TRACE 24 - 24)
ZEROD 85 - 26 o
ASAMPL &7 - &7

T, ok
2o

50 ENTRIES FREE QUT OF &4

¥
P
=3

¢
Riec

-13~ {

The directory listing shows that the program named DIR
resides on track 16 so that, in fact, the program could be
run on an 8" floppy by the statement RUN"16 just as well as
it could be by the statement RUN"DIR., For more information
on the directory program and the sorted directory program,
DIRSRT, refer to the utilities description portion of the manual,

Saving a BASIC Program on Disk Via a Named File

In order to save a program on disk as a named file, the
disk file must exist on the disk and appear in the directory.
A file is created on disk by use of the CREATE utility program.
This program allows the creation of a disk file of any size from
one track to the total free space of the disk. The file must have
six character file name which is unique, that is, the name cannot
be the same as that of an existing file. The CREATE utility
also checks to make sure that_the tracks specified are not in usd
at the moment to preclude the possibility of over-writing or
destroying other data on the disk. To utilize the CREATE program,
simply type RUN"CREATE. To start, CREATE a one track long pro-
gram Ealled TEST. For more detailed information on the CREATE
program, refer to the utilities description portion of ‘the manual.
Once a file such as the example file TEST has been created with
the CREATE utility, you can directly store a program in it. Key
in a short program and run it. Then to store this program on
disk in the file TEST, type the following Staﬁement: DISK!"pPUT
TEST". This statement saves the program currently in the work
space under the file name TEST. If TEST does not exist or you

misspell it, the disk operating system will report the error. ;

-14-~

a

Loading a BASIC Program From Disk By File Name

To load and run a BASIC program by file name, use the same
proce@ure as you have used for utility programs. Simple type
the statement RUN"TEST", If you want to bring the program into
the work space without running it, type DISK!"LOAD TEST". This
loads the program into the work space but does not execute it.
After these exercises have been completed, you can verify the
existence of the file TEST by running the directory program and
observing what track it appears on.

Deleting Files

After utilizing a diskette for awhile, it may be desirable
to remove a file from the disk because the file is no longer
needed or possibly because the program is becoming too large
for that particular file and the file must be recreated a larger
size. Files can be removed from the directory and subsequently
from the disk by use of the Delete Utility. Refer to the utility
documentation portion of this manual for instructions on the use

of this utility.

Other Useful Features For Loading and Saving Programs on Disk

We have now covered all the fundamentals required to put
programs on a diskette and recall them from a diskette. The
following discussion will provide additional insights into the
use of the disk system for BASIC programs and other files.

Tips for File Use

File names can be up to six characters long and are generally

three to six characters. The first character in the file name
must be alphabetic and the name cannot include spaces. The
...15..

ooy

directory program lists out file names as they appear in the
directory. For this reason, a sorted directory program, DIRSRT,
is available. It sorts the directory in alphabetic order or
track number order., The disk also contains a renaming utility

called RENAME which allows a file name to be changed.

Tips On Pile Size

The 0S-65D approach to data files requires that the user
know how large his file is initially. For programs, this should
not be a problem.

To be safe, the user can simply specify a disk file size
as largevas or slightly larger than the available RAM for BASIC
programs. For example, with the mini-disk system with 20K of
RAM slightly less than 8K is available for programs, thus, a
four track file will handle any program that can be typed into
the machine. The user should always maintain a scratch file(
usually with the name SRATCH, which is larger than the memory
size of the computer or simply have a large block of free tracks.
This file or block of tracks can act as temporary storage in
several situations. For example, the user typeé in a program
and then remembers that he did not create a file for it. The
procedure is to simply store the program in SRATCH, create an
appropriate file, reload the program from SRATCH and store it
under its proper name. Another case comes up when a BASIC
program outgrows its file size. The program is then stored in
SRATCH, the old file is deleted and then recreated in a larger
size. These procedures will also be valuable for data files

which will be discussed later.

-16~-

Backing Up Files

On computer systems with two or more disk drives, it is

recommended that the user periodically recopy his entire disk to

a "back up" disk by use of the Copy Utility. The Copy Utility

is a machine code utility and is described in the utilities

documentation portion of the manual. On single drive systems,

the best approach is to back up work by performing all disk

file functions on two diskettes. That is, when a new program

is being generated, a file for it should be created on two

diskettes and then when the program ig entered in the machine,

it should be saved on both diskettes by storing it on one disk,

removing that disk from the system, placing the other diskette

in place and storing it in that diskette. This is a somewhat

tedious process which is why dual drive systems are popular.

Modifying BEXEC* and Applications Disks

We have now covered enough information to allow the customiza-

tion of existing Applications diskettes and the creation of new

Applications diskettes. All 0S-65D Version 3.0 diskettes boot up

in BASIC and call in and execute the BASIC program called BEXEC*.

On hpplications disks, this program contains a menu of available

BASIC programs. On Development disks it may contain a menu of

some of the utilities. To access the operating system, that is,

to unlock an Applications disk such that programs may be listed
and modified, the user must type either UNLOCK or PASS to the
question "YOUR SELECTION?" depending upon the particular diskette.
The system then reports that it is open for modification. By

unlocking the Applications diskette and examining the listing of

-17~

L

3
S

B

Y
%

oooTH
bl ol

e

Bl

T‘E.i.‘_'

T
bad

the menu program, the user can determine where programs are
located on the disk. Programs can then be called in via the

' LOAD command, modified and saved back on disk. Additional
programs can be saved on the disk and menu changes can be

made as required. The Applications disks do not contain the
named file utility programs CREATE, DIR, etc., but can be
utilized in conjunctiun with these programs if they are brought
in from. a Development disk. Likewise, the user can generate

new Applications disks by simply changing BEXEC* on a Development

disk as desired for menu and locked operation.

~18-

Advanced Features of 08-65D Version 3,0 9-Digit BASIC

The 9-Digit BASIC in 0S-65D Version 3.0 contains several
extensions to Microsoft 9-Digit BASIC, These extensions provide:

1. Input/output distribution to various deviqgs

2. Interfaces to the disk operating system kernel

3. Extensions for sequential and random access disk
data files

We will now discuss each of these extensions in detail,

BASIC I/0 Handling

BASIC input and output is performed with the following
commands : INPUT, PRINT and LIST. Under 0S-65D BASIC, these
statements can be utilized in the normal way for input and
output to the console device. Also, input/output can be
selectively routed from/to various other devices on the system
including a terminal, modem or cassette at the serial port,
video display, 430 board based UART, memory buffer, line printer,
two disk buffers, 16 port serial board and a null device. Input/
output caﬁ be routed from/to these devices by simply typing a
pound sign (#) and the device number (as listed in the table below)

immediately following the INPUT, PRINT or LIST command.

Input Devices Output Devices

Serial Port (ACIA) . Serial Port (ACIA)
. Keyboard on 440/540 Board . Video on 440/540 Board
. UART on 430 Board . UART on 430 Board

Null . Line Printer

Memory Memory

Disk Buffer 1

Disk Buffer 2

550 Board Serial Port
Null

Disk Buffer 1

Disk Buffer 2

550 Board Serial Port
Null

- .
s e e

O oo~ s w N
O o~ U

-
@

=19

oo T3
Sl i

e Vol

Sewiciid

-

RN

-

o
|

A
wad

The following are examples‘of the use of these statements.
INPUT #8,D$
PRINT #4, "LINE PRINTER"
LIST #6
For instance, to store a program oOn cassette that exists
on disk, the user simply calls that program into memory and types
LIST#1 or LIST#3 depending on which port his cassette interface
is connected to. This lists that program on that device. To
output to a printer, the user simply types PRINT #4 and the out-
put will be routed to the line printer., Memory cutput, device 5,
is useful for various experimenter situations such as directly
displaying information on the 540 video screen without scrolling.
This particular application is covered in the Character Graphics
Reference Manual. Device 6 and device 7 are memory buffers for
use with disk files. The use of these disk file buffers will N
covered in the following section. Care must be taken not to
route input or output to non-existent or turned off peripheral
devices since this will cause the computer syétem to "hang" and

will require a reset which may destroy data in memory.

BASIC to DOS Interface

0S-65D Version 3.0 utilizes a stand alone command processor
for the disk operating system. That 1is, disk operation can be
performed even if BASIC is not present in memory. Full discussion
of the disk operating commands are in another section of the manual
and in the User's Guide. We have already covered some of these
commands such as LOAD and PUT. The programmer can leave BASIC

and enter the DOS command mode by typing EXIT. If he does not

-20~-

alter the BASIC inte;preter in memory or the work space he can ‘2
return to BASIC by typing RETURN BASIC or in shorthaﬁd form ’
RE BA. The user can also execute a single DOS command without ‘g
leaving BASIC by utilizing the statement DISK!"string" where o

string is an operating system command. This statement can be

part of a BASIC program, thus, allowing the user to conveniently

utilize all the disk operating system commands as part of any

BASIC program,

€3

-

fle@ Ragd

-]

Data Files in BASIC

In many applications it is a practical necessity to store
many variables in such a way that they can be recalled at a
later date., Specifically, after the power has been turned on and
off several times. Such a collection of variables is referred
to as a data file. There are two fdndamental types of data files

available under 0S-65D Version 3.,0; sequential files and random

files,

Sequential Data Files

A sequential data file is a file in which information is
output to the file sequentially, one item right after another
from the beginning to end of the file. To read information from
the file one must sequentially input it. Examples of uses for
sequential files, would be store a large numeric array or to
store information that can be searched sequentially such as
names and phone numbers. Let's walk through the process of
having a name and phone number in a sequential file, First,

a file of adequate length must be created. Then a program must
be written which outputs names and phone numbers to this data file,
Another program can be written that reads the individual string
entries which are, in fact, names and phone numbers and compares
them with a target name which is the name a user is searching for,
If this name is found in the file, the next string from the

file will be the desired phone number. Each file is terminated

by an "end of file" marker which the programmer can use or the
programmer may utilize other techniques for his own end of file,

For instance, in the telephone program, the string "END" could

-2

be utilized as the "end of file" indication. This would be the
last string output to the file and could be checked for when
iﬁputting information from the file, 0S-65D allows the user

one or two disk buffers for use with one or two files., This
means that the user can have one or two sequential files in use
in his program at any given time. These files are referred to

as devices 6 and 7. To utilize files as device 6 and 7, obviously
one must equate them to physical files on disk. This is done by
use of the OPEN'command which equates a named file to a particular
device number. For example, the statement, DISK OPEN 6,"TEST2"
opens the previously created disk file TEST2 and equates it to
device 6. Once this statement has been executed, a statement
such as PRINT#6,A$ will print the string A$ to the file TEST2.
Likewise, information can be input from a file by the statement

" INPUT#6,BS. When this statement is executed, the next variable
in the data file TEST2 will be read into string variable BS.

At the end of a program or when one has completed their use of

a particular data file, the statement DISK CLOSE,6 should be
executed which closes the data file and assures that all updates
to the file are made. Two data files may be in use simultaneosly
by opening one on device 6 and one on device 7. Then INPUTS and
PRINTS to device 6 and 7 can be made interchangeably. More than
two data files can be used in a program by simply closing and re-
opening files, as needed.

Steps to Using Sequential Data Files

The following steps must be taken to create and fill a

sequential file with information.

«D 3=

Using the CREATE utility, create a file to hold the
sequential output program with a name such as PROGL.
Create a data file with a name such as TESTZ.
Execute the Change Utility by typing RUN"CHANGE.
Use the Change Utility to allocate space for one
disk buffer at the beginning of the BASIC program.
Refer to the section on disk utilities for explicit
information on using the Change Utility.
When the CHANGE program is complete, the work space
has been reconfigured with space allocated for a disk
puffer. The program for use of the single disk file
should be entered at this time. The following program
may be used. It will place four strings in the disk
file TEST2.

1¢ DISK OPEN,6,"TEST2"

20/ FOR I=1 TO 4

30 PRINT #6,"STRING",T

40 NEXT I

59 DISK CLOSE,6
Store the program on disk under the name specified in.
Step 1.
Run the?program which should output the strings to the
disk file TEST2.
Use the utility program SEQLST to list out the contents
of the data file TEST2. Refer to the utilities portion
of the manual for directions,

Make the following changes to the program to use it to

-4~

[
¢

list out the file.,
30 INPUT #6,DS
35 PRINT DS$
9. Run the modified program. The results should be the
same as they were when SEQLST was run,

Random Data Files

In may instances, sequential files become very impractical.
For instance, in an inventory application, one would like to be
able to gquickly access an inventory item for reference or
change. This requires the use of a random data file., Random
data files differ from sequential files in that groups of entries
are combined into records. These records can be randomly (non-
sequentially) accessed. For instance, a random data file could
have ‘a hundred records. A program could quickly access any one
of these records by record number. For example, the contents of
record 58 could be brought in and the contents of record 72 could
bbe brought in without looking at any of the records in between.
05-65D Version 3.0 supports one random access file at a time as
device 6, This can be used in conjunction with an optional
sequential file as device 7. The length of individual records
within a random access file can be adjusted by the user but are
factory set at 128 bytes. There can be any number of individual
variable entries within a record of 128 bytes and one record can
overflow into the next so that if the user wanted 256 character
reEords for instance, he would just utilize even record numbers.,
The following example will use the same data file, TEST2, and use

it as a random file with a total of ten records. To reuse this

-25—

o
S

|
Pt 4

vk

£
T
-1
oA
gt

sequential data file as a random file, we must first perform
some housekeeping. This housekeeping is performed with the
zero Utility. The Zero Utility erases all information in a
file. To accomplish this, type RUN"ZERO. Then specify TEST?2
as the file to be erased. A more complete discussion on the
Zero Utility function is present in the utilities portion of
this manual. After TEST2 has been zeroed, proceed with the
following steps.

Steps to Using Random Data Files

1. Create a new program file or utilize the same program
file as in the sequential exercise.
2. Execute the Change Utility and allocate space for one
disk buffer,
3, Type in the following program:
19 -DISK OPEN,6,"TEST2"
2¢ FOR I=@ TO 9
3 DISK GET,I
40 FOR J=1 TO 2
5¢ PRINT#6, "STRING";I;J
6 NEXT J
7¢ DISK PUT
8 NEXT I
99 DISK CLOSE,6
4, Save the program under the file name specified in
Step 1.
5. Run the program to fill TEST2 with ten records of

information.

—-26-

6. ‘Utilize the random file list utility RANLST to list
out the information placed in TESTZ2. Note that RANLST
only lists one string per record so it does not list
the second string we wrote to each file record.
7. Modify the original program via the following lines:
5¢ INPUT #6,D$
55 PRINT DS$
70 (deleted)
8. Execute the modified program to observe the output
information. Output information should be the same
as was originally placed in the file.
Note that in the above example, ‘an inner FOR loop is used to
write each of two strings to each record of the file. Execution
of the PRINT statement for each string causes the data folleed
by a carriage return character to be written to the file. Al-
though the carriage return character occupies a character of
file space, its use after each item written to the file greatly
simplifies inputting the data. If a record were written as a single
long string, commas would have to be written out between each item
or the user would have to provide the detailed programming to break
the long string into its separate items whenever the string was
input. it is much simpler to write each item with a separate PRINT
statement. There is also another limitation preventing long strings
from being read. The BASIC input buffer is 72 characters long.

Consequently, longer strings are truncated on input.

-7

=3

A

rﬁé"; i

g

"

L

0
ﬁ
x

I

3

£
ool
By e,

=
‘,ﬁ

™

Using the Assembler/Editor

0S-65D Version 3.0 supports an interactive Assembler/
Editor. The Assembler/Editor can be brought in by proceeding
with the normal boot in procedure to BASIC's immediate mode.
Then type EXIT followed by ASM. This brings in the Assembler/
Editor and places the computer in the Editor's immediate mode.
Assembler/Editor's operation is as specified in the :separate
Assembler/Editor Manual, except for the extensions to the
Assembler covered here., The Assembler/Editor is an extra
cost option. The Assembler/Editor utilizes two types of-
files. Source files which contain the assembler code and
optional object files which contain the machine code generated
by the assembly. Under 0S-65D Version 3,0, source files can be
named or specified by track number. Object files can be stored
in variable sector format for placement anywhere in memory or |
can be stored in named file mode if they are set up to reside
in the standard work space. In addition, the disk operating
system includes an execute object file command (XQT file name)
which allows the direct and convenient execution of machine
code files providing they are linked to the operating system
and reside in the normal work space area. Named files must be
created via the BASIC utility before the assembly process is
begun. The user has the option of exiting from the Assembler
to the DOS for DOS level commands by the use of the EXIT command
and returning by typing RE ASM after complefing a command. Or,
a command can be sent directly to the DOS by simply preceeding it

with an exclamation point (!). For example, !LOAD file name §

-28~

loads a source code file into the assembler's work space and
returns control to the Assemblér/Editor. Note you can only
return to the Assembler if the Assembler is in the transient
processor area. Likewise, you can only return to BASIC if

BASIC is in the transient processor area. -So, if the Assembler

was last used, you will have to type the DOS command BASIC to
o

reboot BASIC. If BASIC was last used, you will have to type

the DOS command ASM,

A

e

prs

Bl

VX

%

Using the Extended Monitor

0S-65D Version 3.0 also includes an Extended Machine Code
Monitor for debugging programs at the byte level. This utility
is particularly useful for assembler code work. The Extended
Monitor can be entered by booting in the system, exiting BASIC
by typing EXIT and by typing EM which boots in the Assembler/
Fditor and Extended Monitor and leaves the system in the extended
monitor command mode. The 0S-65D Version 3.0 User's Guide, at
the end of this manual, provides a complete list of the Extended

Monitor's commands.

-30 =

Lo

-
System Overview ”?

Ei

The 0S-65D Version 3.0 is a highly refined super set of

the original 0S8-65D operating system which was first introduced

in 1976. Version 3.0 is a compact, highly responsive operating 4
system for BASIC, assembler and machine code programming. It is oy
suitable for all computer system uses except the most demanding -j
business applications where 0S-65U and 0S-DMS should be utilized. '?
System Architecture 4

Version 3.0 utilizes a stand—aloﬁe DOS complete with command ,E

interpreter. The DOS and command interpreter are part of the DOS

i

kernel and can be utilized without a programming language. In
addition to the DOS kernel, the system contains an I/0 distributor ==
which supports all standard Ohio Scientific I/O devices and can

route input and output through common locations to any combinatic |

of these input and output devices. The system supports a transient -

}

processor area, specifically for Microsoft BASIC, the 6502 Assembler,.

Editor and the Extended Monitor and can be used for any other 6502

&l

language processors which may be installed on the system. The

P
S A

principal source code or object file work space starts at 317E

hex for 8" floppies and 327E for mini-floppies. The following

\
4

memory map shows the overall layout of the system,

e

2

e

-3 -

0-FF
100-FF

41 200-22FF

2w 2300-3178
2300-265B
265C-2A4A
2A4B-2E78
26793178

317E up to BFFF

System Memory Map

6502 Page Zero

. 6502 Stack

Transient Processor Area for BASIC or Assembler
or other language processor

0S~65D V3.0 (to 3278 on mini-floppy versions)
I/0 Routines

Disk Drivers

Operating System Kernel

Swapper

gource File Work Space (327E up for mini-floppy)
Disk buffers when present normally occupy from
317E up, offsetting the work space (327E on

mini-floppy versions)

-30=

Utility Program

A complete set of utility programs are provided in the 0S-6L |
Version 3.0 for use in creating new files, copying files, printing
directories of files ér file contents, etc. These programs may be
used without any knowledge of their implemenfation. However, they
are all written in BASIC and may be used by the interested reader
as sample programs demonstrating various programming and file
accessiﬁg techniques.,

Descfiptions of the operation of the utility programs appear

on the following pages.

-33=

[‘»§

PR

Fezad

FEPNR

R

oy

B

fos St
b A
Bl WA

Create File Utility

This utility program is used to create new named files.
Note that a file must have been created with this program
before it can be referenced by any of the file commands. To.
create a file, type:
RUN "CREATE"
The program output and the kind of input you may enter
in response are as shown below. Any unacceptable response will
result in an error message and/or a répeat of the request for
input.
FILE CREATION UTILITY
PASSWORD?
The program continues with an explanation of its
operation: . {
CREATES AN ENTRY IN DIRECITORY FOR A NEW FILE AND INITIALIZES
THE TRACKS THAT THE NEW FILE WILL RESIDE ON. THE TRACKS
WILL CONTAIN NULLS WITH A RETURN AT THE END OF THE TRACK.
FILE NAME?
Enter a one to six character file name that is not a duplicate
of an existing file name, It must start with a letter.
FIRST TRACK OF FILE?
Enter the nﬁmber of the first track the file is to reside
on. Note that a file always begins on a track boundary and
resides on a whole number of tracks.
NUMBER OF TRACKS IN FILE?
Enter the number of tracks on which the file is to reside.

All tracks assigned to a file must not have been previously asvai

~34 -

R

|

The program then continues- with:
12 (8 for mini-floppy) PAGES PER TRACK. IS THIS OK?
Type YES if the specified number of pages per track is ;J

acceptable; otherwise, type NO. If you type NO, the following

guestion is asked:
HOW MANY PAGES PER TRACK THEN?]

Enter the number of pages of storage you want each track

¥
FRSTNS

to contain. Any number up to the default number of pages is

acceptable., For full size diskettes this is twelve pages and

4
id

for mini-diskettes it is eight pages per track.

The file will now be created and its name and track

location will be entered into the directory. Each of the
tracks of the file will be initialized to nulls with a return

character at the end of each track.

]

-35-

Change Parameter Utility

This utility program is used to change the system parameters
for terminal width and for the work space linits.

The defined terminal width value for the system is used by
the BASIC interpreter to provide automatic line rollover when
lines longer than the terminal width are output. A carriage
return and line feed charécter are automatically inserted into
the output line when it hits the terminal width, Thus, long
lines are output as two or more lines rather than a single
truncated line. Since some serial terminals and all OSI video
systems automatically provide line rollover, you may not need
to change this parameter. Note that changing terminal width
with this utility program.provides only a temporary change.
Whenever the system is rebooted or BASIC is cold started (by
typing BAS), the terminal width is set back to its default
value 132, If you write a BASIC program that reguires a
different terminal width, then you must run this utility program
to appropriately change the terminal width parameter prior to
running that BASIC program. Or, you can include into the BASIC
program the following commands which setup terminal width (WD is
4 BASIC variable which must contain the desired terminal width) :

| POKE 23,WD
NC = INT(WD/14) *14
POKE 24 ,NC
The second POKE, above, sets the column beyond which there are

no more 14 character output fields. (Fourteen is the number of

character positions allotted to each output field when commas

~-36~

are used to separate the variables in a PRINT statement.)

The "work space" is that RAM area where the assembler and
BASIC source programs reside, It is used to hold. these source
programs and various tables, lists, etc., that are used dﬁring
assembly or BASIC program interpretation, The work space
normally begins at 1267C (hex 317E) for full size floppy disk
systens and at 12926 (hex 327E) for mini-floppy disk systems.
The end.of‘the work space is normally the end of the main memory
(that‘memory which starts at address zero and is contiguous up
to some higher address) .

The BASIC command RUN "file name" and the DOS commands
LOAD and PUT provide a means to easily load a disk file into
the work space and to put a file that is in the work space back
onto disk either by name or by track number. Such files are
referred to as LOAD/PUT (or L/P) files.

. The Change Parameter Utility Program permits changes to
the work space limits so that you can reserve space in a LOAD/PUT
file for disk I/O buffers, assembly language object code or
whatever. The following diagram shows relevant work space

addresses.

w37

Full Size
Floppy Disk
System

Depends on Size

of System Memory
or No. of Pages

Specified

Usexr Defined

User Defined

18814 (497E)

12 Pages

15742 (3D7E)

Buffer Size is

3072 (C00) Bytes
12 Pages

Normal End of Work Space

Room at the Top
(if present)

Changed End of Work Space

Source code,
tables, lists, etc.
storage used
by BASIC

Changed Start of Work Space

Additional Room
(1f present)

— e mm e e e e e e ema em e e ey

Second Buffer
(if present)

First Buffer
(if present)

Normal Start of Work Space

12670 (317E)

Mini-Floppy
Disk
System

Depends of Size

of System Memory
or No. of Pages

Specified

User Defined

User Defined

17022 (427E)

8 Pages

14974 (3A7E)

Buffer Size is

2048 (800) Bytes
8 Pages

12926 (327E)

0S-65D V3.0 Work Space Addresses in Decimal (Hexadecimal)

~38~-

ow

,..
N4

PR,

To change system parameters, type:

RUN "CHANGE"

The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input.

CHANGE PARAMETER UTILITY

THE TERMINAL WIDTH IS SET FOR 132

DO YbU WANT TO CHANGE IT (Y/N)?

Enter YES or NO. If you enter YES, the program requests
a new value for the terminal width.

NEW VALUE?

Enter a new value from 14 through.255.

The program continues with:

BASIC & ASSEMBLER USE xx K WORK SPACES (yyy PAGES)

WOULD YOU LIKE TO CHANGE THIS (Y/N)?

This refers to the total amount of main‘memory available to
the system software. Each K (1024 bytes) contains four 256 byte
pages. A change to this parameter will make a portion of highest
memory unavalilable to systems software. Note that such memory
will not be included within LOAD/PUT files.

Enter . YES or NO. If you enter YES, the program requests
the number of pages to be used by system software.

HOW MANY PAGES SHOULD THEY USE?

Enter a number of pages from 50 through 191.

The program continues with:

CHANGE BASIC'S WORK SPACE LIMITS (Y/N)?

Enter YES or NO. If you enter NO, the program terminates,

-39~

If you enter YES, the program requests the following:
HOW MANY 12 (8 for mini-floppy) PAGE BUFFERS DO YOU
WANT BEFORE THE WORK SPACE?

Enter 0, 1 or 2 to reserve that many track buffers at the

beginning of the work space. Note that device 6 memory buffered

I1/0 uses the first buffer by default while device 7 uses the

second buffer by default., Of course, these defaults can be

changed with appropriate POKES. If no buffers are specified,

the program asks:

WANT TO LEAVE ANY ROOM BEFORE THE WORK SPACE?
Enter YES or NO. If you enter NO, the program outputs
the address of the start of the BASIC work space as shown

below. If YES is entered, proceed to the "HOW MANY BYTES?"

guestion below,

If one or more buffers was specified, the program continues

with:
WANT TO LEAVE ANY ADDITIONAL ROOM?

Enter YES or NO. If you enter YES, the following question

is asked:
HOW MANY BYTES?

Enter the number of additional bytes to be allocated

before the start of the work space.

The program then outputs the new address for the start

of the work space and the total number of bytes reserved for

buffers, etc.

THE BASIC WORK SPACE WILL BE SET TO START AT aaaaa
LEAVING bbbb BYTES FREE IN FRONT OF THE WORK SPACE

IS THAT ALRIGHT?

—~40~-

i ek

[N

E.3 B3 BT

P

§

Enter YBES or NO. If you enter NO, the program requests
that you specify an exact lower limit address for the work space.
' NEW LOWER LIMIT?
Enter a lower limit address. The program then confirms this
value by outputting:
bbbb BYTES WILL, BE FREE BEFORE THE WORK SPACE
The program then continues with:
YOU HAVE xx K OF RAM
DO YOU WANT TO LEAVE ANY ROOM AT THE TOP?
Enter YES or NO. If you enter YES, the following question
is askedﬁ
HOW MANY BYTES?
Enter the number of bytes to be allocated between the top
of the work space and the end of main memory.
N The program then outputs:
THE BASIC WORK SPACE WILL BE SET TO END AT ccccc
LEAVING dddd BYTES FREE AFTER THE WORK SPACE
IS THAT ALRIGHT?
Enter YES or NO. If you enter NO, the program requests
that you specify an exact number limit address for the work space.
NEW UPPER LIMIT?
Enter an upper limit address. The program then confirms
this value by outputting:
eeee BYTES WILL BE FREE AFTER THE WORK SPACE.
Note that the reservation of space after the work space is

not recorded on disk with a program when it is saved in a file.

The allocation is only recorded as a RAM resident change to the

-41-

RS

BASIC interpreter and remains in effect until explicitly
changed again, or BASIC is reloaded by typing BAS in the
DOS command mode, Later, running a program that results
in an "Out of Memory" (OM) error may be the result of a
reduced work space that is no longer required.

Program output continues with:

.YOU WILL HAVE fffff BYTES FREE IN THE WORK SPACE

IS THAT ALRIGHT?

Enter YES or NO. If NO is entered, the Change‘Parameter
Utility Program restarts from the beginning. Otherwise, the

requested changes are made, the work space contents are cleared

and the program terminates.

-4

B

[

Delete File Utility

This utility program may be used to delete a named file

from the
resided,
tracks.
on those
contents
a direct
RUN

The

directory. This frees the tracks on whiéh that file
put it does not actually alter the contents of those
Consequently, until a new file is created residing
tracks or the tracks are otherwise changed, the

of the old (deleted) file are still recoverable by
track number access., To delete a named file, type:

"DELETE"

program output and the kind of input you may enter

in response are as shown pelow. Any unacceptable response

will result in an error message and/or a repeat of the request

for input.

DELETE UTILITY

REMOVES AN ENTRY FROM THE DIRECTORY

PASSWORD?

Enter the appropriate password.

The

program continues with:

FILE NAME?

Enter the name of the file to be deleted.

The

file will now be deleted from the directory.

-43-

Directory Utility

V
¥ X
W e

This utility program is used to output a list of all current- ;
b

ly existing named files and the numbers of the tracks on which s

Lase

they reside. To output a directory, type:

RUN "DIR"
The program output and the kind of input you may enter in ,;
response are as shown below. e

i

LIST ON LINE PRINTER INSTEAD OF DEVICE #d?

Enter YES or NO. (d is the current output device assignment.) ™
If you enter YES, the directory output will be on device 4; other- =
wise, it will be on the currently assigned device. If you answer ig
YES and there is no device 4 on.the system, the directory will @

not be output.

A sample directory output appears below.

0S~-65D VERSION 3.0

—— DIRECTORY --
FILE NAME TRACK RANGE &
e e e oA
05-65D3 #-8 ™
BEXEC* 9~9 Q
CHANGE 18-10 i
CREATE 13-14 -~
DELETE 15-15 3
DIR : 16-16 i
DIRSRT 17-17
RANLST 18-19 ™
RENAME 2020 o
SECDIR 21-21
SEQLST 22-23 -
TRACE 24-24 j
ZERO 25-26 1
ASAMPL, 27-27
E
w3

5¢ ENTRIES FREE OUT OF 64

The above directory shows that the system software occupies

—44 -

tracks zero through eight., 0S-65D3 is not a file in the
conventional sense, but appears in the directly solely to
delineate and reserve the tracks occupied by system software.
Track nine contains the BASIC Executive, BEXEC*, This is a
BASIC program which always runs when the system is booted and
which may be customized as needed to suilt your application.

In general, tracks ten through 26 contain the various utility
programs; however, note that tracks 11 and 12 are free. Track

27 contains the sample assembler language program, ASAMPL,.

-45~

Sorted Directory Utility

This utility program may be used to output a list of all

currently existing named files and the numbers of the tracks

on which they reside. This output can be in alpha numeric

order by file name or by track number.

directory, type:

RUN "DIRSRT"

To output a sorted

The program output and the kind of input you may enter in

response are as shown below.

Any unacéeptable response will

result in an error message and/or a repeat of the request for

input.

SORTED DIRECTORY UTILITY

SORTED BY NAME OR TRACK (N/T)?

Enter N or T to specify a named or a track sort, respectively

The program continues with:

LIST ON LINE PRINTER INSTEAD OF DEVICE #47

Enter YES or NO. (d is the current output device assignment.)

If you enter YES, the directory output will be on device 4; other-

wise, it will be on the currently assigned output device. If you

answer YES and there is no device 4 on the system, the directory

will not be output.

If neither N or T was entered above

THEN IT WILL BE UNSORTE

D

is output and the directory list will be in the same order as

the actual entries in the directory.

Sample directory outputs sorted by name and track number

appear on the next page.

-46-

B
e -

b

23

w4

&89

v

i

hd
L
T

&

® .

ezl

s
Zaze ik

£

0S~65D VERSION 3.0

-~ DIRECTORY -~
FILE NAME TRACK RANGE
ASAMPL 2727
BEXEC* 9-9
CHANGE 19-10
CREATE 13-14
DELETE 15-15
DIR 16=16
DIRSRT 17-17
0S-65D3 g-8
RANLST 18~19
RENAME 20-2¢
SECDIR 21-21
SEQLST 22-23
TRACE 24-24

ZERO 25-26

54 ENTRIES FREE OUT OF 64

0S-65D VERSICN 3,0

~~ DIRECTORY =-
FILE NAME TRACK RANGE
0S-65D3 g-8
BEXEC* 9-9
CHANGE 19-1¢
CREATE 13-14
DELETE 15-15
DIR 16~16
DIRSRT 17-17
RANLST A 18-19
RENAME 20-20¢
SECDIR 21-21
SEQLST 22~23
TRACE 24-24
ZERO 25-26
ASAMPIL, 27-27

58 ENTRIES FREE OUT OF 64

-47-

Random Access File List Utility

This utility program may be used to list the contents of
a randém access file either a single record at a time or in
gfoups of contiguous records. The program assumes 128 byte
records. To list a random file, type:

RUN "RANLST"

The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input,

RANDOM ACCESS FILE READ

FILE NAME?

Enter the name of the random access file to be listed.

EXAMINE SINGLE RECORDS OR GROUPS {(S/G)?

Enter S or G. If S is entered, the number of the single
record to be listed is requested.

RECORD NUMBER?

Enter the number of the record to be listed, (Records are
numbered from zero through n.) The specified record is listed,
then the RECORD NUMBER question is again asked. To terminate
the program, merely type a (return) to this question.

If G is entered, above, the range of record numbers to be
listed are requested.

FIRST RECORD?

Enter the number of the first record to be listed,

LAST RECORD?

Enter the number of the last record to be listed.

-48-

The specified records are listed, then the "SINGLE RECORDS OR
GROUPS" question is again asked. To terminate the program,
merely type a (return) to this question.

Note that this program reads and lists a single string
from the start of each record. Random files with more than
one entry (an entry is a string of printing characters followed

by a return) per record will not be fully listed by this program.

-49

=

L
P

fd Bl

e

-~

E,_,_ {:.. b oo %

N

ety
s

4

Fo o

Rename File Utility

This utility program may be used to change the name in the
directory of any file listed in the directory. To rename a
file, type: |

RUN "RENAME"

The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will
result. in an error message and/or a repeat of the request for
input.

RENAME UTILITY

OLD NAME?

Enter the name of the file to be renamed as it currently
exists in the directory.

The program then outputs:

RENAME "aaaaaa" TO? (aaaaaa is the old name.,)

Enter the new name for the file of one to six characters,
the first being a letter.

The name will be changed and the utility program will

terminate.,

-50~-

Sector Directory Utility

This utility program may be used to output the number
and size of each sector on each of a specified range of tracks.
To output a sector directory, tybe:

RUN "SECDIR"

The program output and the kind of input you may enter
in response are as shown below. Any unacceptable response will
result in’an error message and/or a repeat of the request for
input.

SECDIR

USES 0S-65D'S DIR COMMAND TO PRINT OUT A SECTOR MAP

OF A GIVEN RANGE OF TRACKS

FIRST TRACK?

Enter any valid track number greater than zero and less

than the total number of existing tracks (76 for full size disks

or 39 for mini~-disks).

LAST TRACK? -

Enter any valid track number greater than that entered for

the first track.

A sector map for the specified tracks will be output, then
the program will terminate. A sample of such is shown below.
SECTOR MAP DIRECTORY

TRACK {1
#1~-35
g2~g5

TRACK ¢2
g1-9B
etc.

OK

-5] -

]

LS

3

oo

Ll

In the sample, track 1 has two sectors, both five pages

s

in lencth. Track 2 has one sector of 11 (hex B) pages.

—5D e

Seauential Mille Lister Utility oy

This utility program may be used to list the contents of -

S |
a sequential file, A sequential file is one in which all entries o
within the file are contiguous with no intervening gaps. To list M
_ 3

a seguential file, type:
&
1 TsnoLsT! d;
The vrogram output and the kind of input you may enter in o
response are as shown below. Any unacceptable response will ;j

1 . s error message and/or a repeat of the request for

resally

inpur
-
“I, FILE LISTER .
Uiy
CGUTROL-C TO STOP ’
£
I R
v~ - rha name of the sequential file to be listed.
C vified file is listed until you type a Control-C or (
o
bl ca - ¢ L file is reached in which case the program terminates i
el sing end-of-~file message:

Wy o 0RO TN LINE 100

-53=

Trace Utility

This utility program may be used to initiate or terminate
a BASIC program line number trace. To trace a BASIC program,
type:

RUN "TRACE"

The program output and the input you may enter in response
are as shown below. Any unacceptable response will result in a
repeat of the request for input,

TRACE UTILITY

WHEN BASIC'S TRACE FEATURE IS ENABLED, BASIC WILL PRINT

OUT EACH LINE NUMBER OF THE PROGRAM BEFORE IT IS EXECUTED.

ENABLE OR DISABLE (E/D)?

Enter E to enable the trace or D to disablevthe trace. If
the trace is being enabled, :

160

OK
will be output. .The "160" is a trace of the last line of the
utility program. Now run the program you wish to test with
line number tracing,

Note that the execution of any program - including utility
programs such as this one - will include line number outputs
while the trace is enabled. This will not adversely affect the

operation of the program.

-54 -

I)
b

File Zeroing Utility

This utility program is used to zero the contents of a data ! ~3
file. This fills the entire data file with null (hex @@) characters

which are ignored (skipped over) during BASIC input. You may

find it advantageous to "zero" random data files before entering

{: x’;

data into them in order to provide a "background"” that is

"transparent" (not seen) by a BASIC INPUT command. To zero a

Gond

file, type;

n
o %

[
Sl

RUN "ZERO"

The program output and the kind of input you may enter in

i

response are as shown below. Any unacceptable response will

£

result in an error message and/or a repeat of the request for
input.

FILE ZERO UTILITY

COMPLETELY ERASES THE CONTENTS OF A DATA FILE

PASSWORD? L

Enter the appropriate password.

FILE NAME?

Enter the name of the file to be zeroed,

The program continues with:
IS IT A NMORMAL 12 (8 for a mini-floppy) PAGE DATA TILE? wi
Enter YES or NO. If NO is entered, the following message

is output:

THEN HOW MANY PAGES PER TRACK?

Enter 1 through 12 (8 for a mini-floppy) to specify the number
of 256 byte pages per track in the file. e

The file will be zeroed and the program will terminate.

~55- g

0S-65D V3.0 Kernel

The 0S-65D V3.0 kernel contains its own command interpreter
for handling those commands that are basic to the system. These
include commands for initializing diskettes, selecting a disk
drive, transferring specific disk sectors and files, initiating
various language processors, etc., All kernel commands are listed
in the User's Guide with brief descriptions of their function.

Those requiring further explanation are also covered below.

Accessing the Kernel

Upon initializing the system, type UNLOCK to the gquestion
"FUNCTION?". Then type EXIT. The DOS kernel prompter A* then

appears and any kernel commands may be entered,.

Changing I/0 Distributor Flags

I0 nn,mm Changes input and output flag
I0 nn - Changes input flag only
10 ,mm Changes output flag only

This command changes I/0 distributor flags to specify from
which device system input is to be taken and to which device or
devices system output is to be sent. The values nn and mm shown

above in the command are taken from the following table:

-56-

[

)

nn Input Device mm Output Device

gg - Null g¢ Null |

@1 Serial Port (ACIA at FCFQ) . g1 Serial Port (ACIA at FC@{) g
@2 Keyboard on 440/540 Board g2 Video on 440/540 Board 3
g4 UART on 430 Board g4 UART on 430 Board

8 Null g8 Line Printer 53
19 Memory 19 Memory ‘ ﬁ
2¢ Disk Buffer 1 2¢ Disk Buffer 1 i
49 Disk Buffer 2 49 Disk Buffer 2 .
84 550 Board Serial Port 8¢ 550 Board Serial Port

Note that the above values are hexidecimal numbers each of which
corresponds to the setting of one bit within the flag byte. Setting e
no bits in an I/O flag byte specifies the "null device". Output to o
the null device is thrown away. Input from the null device yields ﬁ
undefined data. If more than one bit is set in the input flag, =
input is taken from the lowest numbered device (other than null)

' £33

and the other bits are ignored. More than one bit set in the
output flag results in output being sent to each device for which
the appropriate bit is set, For example, the command "IO ,g9"

would result in all output going to both the Serial ACIA Port

o

B e

and the Line Printer.
Some of the above devices need further explanation.

Memory input is from RAM starting at the address contained

coid

in locations 238A (low) and 238B (high) with an automatic incre- e
mentation of the address after each character is input. Memory

output is to RAM starting at the address contained in locations

2391 (low) and 2392 (high) with an automatic incrementation of

the address after each character is output. The addresses in

these locations can be changed by the user in order to do memory
I/0 to any available RAM area. The command MEM nnnn,mmmm is <%

provided for this purpose. The nnnn is a four hex digit address 4

=57~

for input, mmmm is an output address.

pDisk buffer I/0 operates similar to memory I/0 described
above. However, I/0 to the disk buffers also results in automaticf
disk transfers whenever a buffer (track) boundary, is crossed. 1In
order for this disk I/O to properly take place, a few parameters
must be set up before performing any of the actual input/output
operations. (These parameters are set up in BASIC by the command

OPEN.) The parameters and their locations are:

Disk Buffer 1 Locations

2326 (low), 2327 (high) Buffer start address (normally 317E)*
2328 (low), 2329 (high) Buffer end address +1 (normally 3D7E)*
23247 ‘ First track of file (BCD)

232B Last track of file (BCD)

232C Current track in buffer (BCD)

232D Buffer dirty flag (0 = clean)

Disk Buffer 2 Locations

232E (low), 232F (high) Buffer start address (normally 3D7E)*
2330 (low), 2331 (high) Buffer end address +1 (normally 497E['
2332 First track of file (BCD) ‘

2333 Last track of file (BCD)

2334 Current track in buffer (BCD)

2335 Buffer dirty flag (0 = clean)

Locations of the current buffer addresses are:

Disk Buffer 1 Input 23AC (low) and 23AD (high)
Disk Buffer 2 Input 23FD (low) and 23FE (high)
Disk Buffer 1 Output 23C3 (low) and 23CA (high)
Disk Buffer 2 Output 2416 (low) and 2416 (high)

Proper initialization of these parameters prior to disk I/0O

includes:

- Setting the current buffer addresses to the buffer end
address +1

- Setting the current track in buffer to the first track
of file -1

After completing output to disk, the current buffer conternts

may be left dirty. (Data has been written to the buffer, but the

*aAdd hex 188 to these addresses in mini-floppy systems.

-58-

disk hasn't yet been updated by transferring the buffer out to
disk.) If this is so, as indicated by a non-zero buffer dirty
flag, the user must perform the final disk transfer. This can
be done by reading past the end of the current buffer which will
cause a page fault and update the disk.

Transferring Disk Sectors

CALL address=track,sector

SAVE track,sector=address/page

These commands transfer a specified track, sector between
RAM and disk. The address must always be fbur hexidecimal digits,
track must be two decimal digits and sector one decimal digit.
Pages must be one hexidecimal digit within the range 1-D for
full size floppies and 1l through 8 for mini-floppies. A given sector
can be referenced only if all lowered numbered sectors exist on
the specified track.,

NOTE: This version of 0S-65D contains more comprehensive
disk transfer error checks than previous versions. As a result,
under some circumstances, error 9 will be reported when attempting
to read or write earlier version diskettes., The D9 command should
be entered when this occurs to temporarily defeat the checks for
error 9. The system should be reinitialized after completing the
transfer to restore error 9 checks.

Executing a Machine Code File

QT file name
This command loads the file "file name" into the work space

at hex 3179 up (3279 up in mini-floppy systems) and transfers control

to location 317E (327E). The "file name" can be either the name of

-59-

-

T R

a previously defined file or a track number. Relative location

four of the file (which loads into 317D) must contain the number

of tracks to be loaded.

Assembly language programs can be developed for use with

the XQT command by assembling them with an origin of 317E (327E)

and by entering the size of the program in tracks in location

317D (327D) prior to saving the program on disk with the PUT

command., Since the Assembler work space also resides at this

address, a two-step procedure must be used to create a program

with this origin.

1. hAssemble the program with an origin of 317E (327E),
but with a memory offset (set with the Assembler Mnnnn
command) that places the object code into some available

memory.

2. Use the Extended Monitor move command to move the program
from the selected available memory area to the start of
the work space, enter the programs size in tracks then
save the program on disk with the PUT command. (

For example, with available memory at hex 8000 up, you could use

an offset of 5000. The program would then be placed into memory

at 817E up (317E + 5000).

A complete sample dialog for creating

such a program is shown below with user input underlined and

explanatory comments.

A*ASM

OST 6502 ASSEMBLER
COPYRIGHT 1976 BY 0OSI
.1LOAD file nane

A¥RE EM

EM V2.0
:M317E=817E,1111
:@317D

317D/dd g2

tEXIT

A*¥PUT file name

Loads the Assembler

Loads the assembler source file
Sets memory offset

Assemble object code into memory
Exit Assembler

Enter the Extended Monitor

Moves the object code to work space
Set up size of program in tracks
e.g., 2 tracks

Exit the Extended Monitor

PUT machine language program on dis}

-60~

Using Indirect Files

Often it 1is desirable to be able to merge two or more
BASIC or Assembler source files or transfer BASIC programs
between incompatible systems such as 0S-65D and 0S-65U., The
Indirect File provides a mechanism for doing this.

In order to use an indirect file, you must have enough
RAM to hold the required program(s) in the BASIC or Assembler
work space and another copy of the program(s) above the work
space., The top of the work space can be appropriately set up
with the Assembler Hnnnn command or the BASIC Change Utility
Program. Then the indirect file mechanism is set up with

this address +1 by entering it into the following locations:

decimal hex
9554 2552 Indirect file output address (high)
9368 2498 Indirect file input address (high)

The low part of these addresses is fixed at 2¢.
Transfers to and from the indirect file are then performed
as follows:

Dumping Source from the Work Space to an Indirect File

1. Load the source into the BASIC or Assembler work space
with the LOAD command.

2. Output *the source but type a [after typing LIST or
: PRINT and before hitting the RETURN key. This turns
the indirect file output on.

3. At the completicn of the output type a]. This will
be echced as]] and will turn the indirect file out-
put off,

Loading Source from an Indirect File to the Work Space

1. Clear the work space by typing NEW in BASIC or INIZ,Y

-6 1=

r

]
A
&

& 3
Ciid

g
=Y

L

PRI

R e

Eooge :j

in the Assembler. Or, load the source file into the
work space into which the indirect file is to ke merged.

Type a Control-X. The indirect file data will be loaded
into the work space. When the } character is loaded at
the end of the file, the indirect file input will be
automatically terminated,

-6 2

Kernel Utilities

For normal use, only two operations from the KERNEL mode
will be rquired - Initializing Diskettes and Copying Diskettes.

Initializing Diskettes

Once the kernel i1s entered, a new diskette can be

initialized for use by 0S-65D V3.0 by removing the operating
onTo

system disk and placing the diskette to be copied”in the "A"

drive.
Then type
INT
The machine answers
ARE YOU SURE?
You answer
Y
After the initialization is complete, the prompter A¥ will re-
appear. If an error message is repofted during the initialization

process, the diskette is probably bad and should be discarded.

Ak khkkk b Ak k kkkK
*# N OT E %
kkkhhkkkkhkkk kK

0SI mini-floppy systems have write protect capability.
Write protected diskettes have a label covering a notch

on one side of the disk. A write protected disk will
immediately -report an error upon initialization or copying
attempts. Simply remove the write protect label before
using.

Copying Diskettes

Diskettes can be copied on dual drive systems as follows:

1. PFirst initialize the new diskette as specified above.

2., Place the newly initialized diskette in the "B" (or lower) .

-53=

.o < .
[T
L FET km& wnatid

|

Y

b

2

3

o
F
L2 |

"‘w&g

[

3

NOTE :
coo
) CooLEF

/?
/

|

drive and the diskette to be copied in the "A" drive.
With the KERNEL mode prompter A* on the screen, tyre
CA g2¢p=¢1,2 for 8" floppies or

CA g2¢8=13,1 for 5" floppies

Type
GO g20¢

The disk copier will appear on the screen. Select 1
and copy from drive "A" to drive "B".

Specify from track # to 34 on mini-floppies and from
track ¢ to 76 on 8" floppies.

As each track is copied, its track number will appear
on the screen.

If an error is reported during copying, reinitialize
the B diskette and repeat the process. If the error
persists, the new diskette is probably bad and should

not be used.

0S-65D V3.0 can be used to initialize and copy diskettes
for all previous versions of 05-65D but not vice versa.

Tn fact, the use of Version 3.0 is recommended over the

use of earlier versions for this purpose.

 9640,0200 277

-6 4~

M

£
e miiuniid

0S-65D Version 3.0 for the I-P

A version of 0S-65D V3.0 is available for use with mini- | E
floppies on the 0SI I-P Personal Computer. It is identical 4
to that described throughout this manual with the following 53
exceptions: vy

- the device 4 line printer driver is not included 5

-~ the device 3 UART input/output drivers are not “3

included i

- oply the 440 style yideo is supporte@ (24 character 7y

display) as appropriate to the I-P display $£

- the device 1 serial ACIA port address is changed to
FggQY as appropriate to the I-P

&
.
i

[

w7
5

3
o

fsd bud

£

&
s

-65-

“

I-P Pico DOS

A version of 0S-65D V3.0 is available as a "Pico-DOS" for
use with mini-floppies on the 0SI I-P Personal Computer. This
system extends the 6~Digit BASIC LOAD and SAVE commands to permit
files to be saved on a diskette as well as on the usual cassette.

In order to use the Pico DOS, insert a Pico DOS diskette
into the A mini-floppy drive and type a D in response to the
D/C/W/M? message. The Pico DOS wili boot up with the following
message :

MINI-65D3 V1.0

MEMORY SIZE? 8955

TERMINAL WIDTH?

Note that the memory size has automatically been specified.
This is because the Pico DOS occupies memory above this point.

Continue with the initialization by entering terminal width !

as usual.’
The new commands available under the Pico DOS are:
LOAD n
SAVE n

where n is a program, number 1 through 8.

-66=-

