DBM-1
Mmanual

pragmatic designs

950 Benicia Ave.
Sunnyvale, CA 94086

Phone: (408) 736-8670

Copyright © 1979. All rights reserved.

| I B

Copyright <:) 1979 by Pragmatic Designs, Inc.
A11 rights reserved.

No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system or translated into any language or computer
language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written per-

mission of Pragmatic Designs, Inc.

Disclaimer:

Pragmatic Designs, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties or merchantability or fitness for any particular purpose.
Further, Pragmatic Designs, Inc. reserves the right to revise this pub-
lication and to make changes from time to time in the content hereof
without obligation of Pragmatic Designs, Inc. to notify any person of

such revision or changes.

3

w

o
.
o

w NN N
. e e
P wn—

oot o;m o E R o] L]
. . A S e .
aNnHwn =

. e
WO

~ ()]
. .

NSNS SNSNSNSNSNNNNNY
L] . . L L] . L] . L] .
voOoONoOLITH WM

o

o

o

(o T

L] .
—
N = O

DBM-1 MANUAL
TABLE OF CONTENTS

FUNCTIONAL DESCRIPTION . . v &« ¢ ¢ o ¢ o o o o o o o o o o

Card Select B1oCK. . « ¢ o ¢ ¢ o o o o o o o o o o o o o o
Memory Block . . « « ¢ o o o o o o o 0 - "

Memory Address Multiplexer Block
Data Control Block . . . « « « « « & R e el e
Address Trap B1ock . . o v ¢ o v o o o o o v o o o o0 e

MEMORY MAPPING . « « « « o o o o o o o o o o o o o o o o
Memory Interface « « ¢ ¢ o o o o o 000 e e e
JUMPER OPTIONS/SOCKET SELECT . . . « ¢ ¢ ¢ o o o o o o o @

Address Select . . . ¢« ¢ v ¢ ¢ ¢ o o o e s e e e e s e e
RO THBR- e e s e e de s e e e e wiw e
Trap Quality T T PR TN B C
Trap Address Sample. . . . « « o « « « .
§-100 Wait States. . . « « ¢« ¢ v o o o .

USER INTERFACE SIGNALS « « . .
Daisy-Chain. « « « « . i EmTase
Qualify Signal » WENOE ensuw
Match Signals. . . .« « « « o ¢ ¢ o o o o
Reset Signals. . . « « « ¢ ¢ o ¢ o ¢ o &

DBM-1 ASSEMBLY PROCEDURE (KITS ONLY) . .

Assembly Instructions. . . . « . « « « o :
DEBUG MONITOR. . . « ¢ ¢ ¢ o o o o« o o &
Debug Monitor Commands « « « « -
Mapped Commands. . . « « « « « « « ¢ « -
General Command Format
A Command - Hexadecimal Arithmetic . . .
C Command - Set Multiple DBM-1 Chain Flag
D Command - Display Memory Block
F Command - Fill Memory With Constant

L Command - Clear Trap LED
M Command - Move Memory Block. . . .

0 Command - Set DBM-1 Memory Qffset. . .
S Command - Examine/Substitute Memory

T Command - Set DBM-1 Address Trap . . .

-j-

CINTRODUCTION . o« v o e v s eemsemm e o e s e

ooooooooo

ooooooooo
.........

ooooooooo

ooooooooo

ooooooooo

ooooooooo

Page

NNSNNN

e e o o o

Y el =
v &
AS N

(3,10~ 0 — 3 = S]

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

Figure

—oooo~NoT LW

DBM-1 MANUAL
TABLE OF CONTENTS

V Command - Verify Memory. « « « ¢« « o ¢« ¢ o o« o & 28
Monitor Modifications. . . . « « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« o o o .. 28
1/0 Modifications. e e e e e RTINS 29
Memory Changes . . . « « « « ¢ o ¢ o o o o o o o o o o o 29
Loading and Saving Programs. « « « ¢ ¢ o+ o o . . 30
CP/M Macro Assembly 2.0 Listing. « ¢« « ¢« o ¢ . & 31
SCHEMATIC DIAGRAM
ASSEMBLY DRAWING
PARTS LIST
SOFTWARE EROM SELECTION
BUFFER BOARD

ILLUSTRATIONS
Block Diagram. . . . v v « o o o o o o o o o o o o o o o o 4
Jumper/Switch Select Summary « ¢ ¢ ¢ o o0 o .. 8
Jumpering Example (8PPPH). « ¢ v v o v 0 oo oot 9
DIP Socket Options . . . « & ¢« ¢ ¢ o ¢ o o o o 0 00 oo . 9
Trap QUalify . « v o v v o o o o o o e h e e e e e e e e 10
Trap Address Sample. e o s e e s e e s 10
Wait State Select. ¢« « « . S e AT ol WG e o e 10
User Interface Signals « ¢ ¢« o ¢ o o o o o o o 12
Trap Daisy-Chain ¢ ¢« ¢ ¢ o o o o o o o o o o 14

Match Signals. . . o v v « ¢ o v o v o o o o o o e e .. 15

22
. . .

. A m @8

1

.0

INTRODUCTION

The DBM-1 "Debug Memory" is a random-access memory card which
simulates read only memories to assist users in developing microcomputer
programs for use in other systems.

The Debug Memory simulates read only memory devices to the user's
target microcomputer system while remaining under the control of the
S-100 development system. The card may be configured to simulate many
types of EPROM, PROM, and ROM devices including:

2708, 27¢8L, 27¢8-1 1024 x 8 UV Erasable PROM

2758 1024 x 8 UV Erasable PROM, single +5V supply
2308, TMS 4700 1924 x 8 MOS ROM
2608 1924 x 8 Factory Programmable PROM

X
X
X

TMS 2716 2048 x 8 UV Erasable PROM

2716, 2716-1, 2716-2 2§48 x 8 UV Erasable PROM, single +5V supply

TMS 2516 2048 x 8 UV Erasable PROM, single +5V supply

2316E 2048 x 8 MOS ROM

2616 2048 x 8 Factory Programmable PROM

Under software control, data from the S-1p@ system is written into
the Debug Memory. The user's target microcomputer system can then read
data out of the Debug Memory by inputting its own memory addresses and
chip selects, just as if the Debug Memory were a ROM chip in the user
system. At any point, the entire contents of the Debug Memory can be
displayed and/or modified by the operator through the S-100 development
system. /9 °

Each gfbug Memory can simulate a 2848 byte block of memory. There-

e 6 00

fore, two -+ type, or one 2K type ROM may be simulated by one DBM-1 card.
Additional Debug Memory cards may be added to simulate additional memory.

The Debug Memory connects to the user's target microcomputer system
through one or two 24 pin DIP jumper cables. Depending on the capacitive

loading and timing margins in the user's system, cable lengths of up to

three feet or longer may be used reliably, even with unbuffered system

-1-

~rel) A ¢ neo 1 IMIVUYUYZ ITHFNWE T 71 W1 ball W rissrsrsm = == —

busses. The DBM-1 includes a passive terminator to reduce crosstalk and
ringing on the interface signals. Generally, however, the cable length
should be kept as short as possible.

The Debug Memory contains a hardware address trap to assist in
program development. The target trap address is loaded by writing it
into the highest two memory locations of the Debug Memory. When the
target trap address is accessed by the user's system, a flip-flop is
set, 1ighting an LED on the board. A 16 pin connector makes several
trap signals available for interfacing to the user's system. These
signa1§ may be used to drive an external indicator LED, control the.
target processor's memory ready logic, or to rfii} the target processor.
When two DBM-1 cards are used to simulate a -4 block of ROM, the trap
logic may be daisy chained, so that the trap address for the 4K block
may be written into the highest two locations of the 4K block, rather
than at the top of each 2K block.

When Debug Memory is not being used for development of the user's
target microcomputer system, it may be used as nofmal RAM in the S-1§9
development system. By the same token, when Debug Memory is simulating
a ROM in the user's target microcomputer, the S-1PP system may be used
for other purposes, such as assembling, 1isting or executing other

applications programs. The ROM simulation will not be disturbed unless

the S-1PP system accesses Debug Memory.

2.0 FUNCTIONAL DESCRIPTION

The DBM-1 block diagram is shown in Figure 1. The five major blocks
of the card are:

Card Select

Memory

Memory Addfess Multiplexer

Control

Address Trap

Each of these blocks is discussed in the following sections.

2.1 Card Select Block
" The DBM-1 is mapped into the S-100 development system as-a-2k an /“°
block of memory, whose base address is selectable by jumpers on the
card. The high order S-100 address lines are compared to the selected
address by the Card Select Block, and when they match, the card is
selected for access by the S-100 bus.

2.2 Memory Block

X

/’IES Memory Block consists ofj;ék‘bits of static RAM, organized
as 2p48-, 8 bit words. The data out is enabled onto the user's target
computer system by its chip enable/read contro]}]ines. The Control
Block enables bidirectional data flow to the S-1pp bus.

2.3 Memory Address Multiplexer Block

The Address Multiplexer Block selects the user target microcomputer
address lines or the $-100 address 1ines for driving the memory address
inputs. Norma11y, the user target microcomputer addresses the memory.
Only when an access is requested by the S-100 bus do the multiplexers

switch. When an S-100 bus access occurs, signals on the 16 pin interface

-3

J 9 M LOMMANG = MOVE FITHNIVI Y DIVLNe o o o o o o o o o

DATA IN

DATA OUT

2048 BYTE
MEMORY BLOCK

) 0ATA DATA

IN
WR

ouT

I

ADDRESS

VCw VW= Ww0n

MEMORY
ADDRESS
MULTIPLEXER
BLOCK

4/\b

Ap-19

CONTROL

PN

|

CONTROL
BLOCK

(

|

ADDRESS
TRAP
BLOCK

l

MATCH

Figure 1

BLOCK DIAGRAM

-4-

Dp-7

Ap-1p

USER'S

TARGET
ROM

SOCKET

CONTROL

o, 1

2.4

2.5

cable and on connector P-2 indicate that data returned to the target
system is invalid and that the target system is not addressing the
memory at that time. This signal may be used to reset the target
processor, if desired.

Control Block

The Control Block controls the flow of data from the S-19P bus
to the Memory Block. It provides the select signal to the Address
Multiplexer Block, generates the memory read/write signal, and requests
wait states of the Sf1¢¢ bus.
Address Trap Block

The Address Trap Block decodes the two high mehory locations of
the selected 2K memory block. Data written to these locations is
latched so that it may be compared to the addresses input by the user's
target microcomputer system. Wwhen a match occurs, a TRAP flip-flop is
set, the trap LED is 1it, and signals on the 16 pin interface cable and
on the connector P-2 indicate that the trap address was reached. The
TRAP flip-flop is cleared by the next S-1pp access to the Debug Memory.

If two DBM-1 cards are used, the address trap logic may be daisy
chained, so that the trap address is written into the high two locations
of the 4K byte memory block.

The trap address match is sampled on either the leading or trailing
edge (switch selectable) of the user system's chip select. If the ROM
being simulated is part of an array on a memory board, an additional
qualifier signal input (i.e. BOARD SEL/) may be provided to qualify

the actual system address match for the trap.

3.0

3.1

MEMORY MAPPING

The ROM being simulated by Debug Memory may be located anywhere
within the user's target micr;eygputer system. Similarly, the DBM-1
jtself may be located on any 2k byte boundary in the S-1pp development
system memory map. The user must, therefare, mentally "map" the
target microcomputer address to the S-1pp system address, simply by
adding an offset to each memory access address.

For example, if the ROM being simulated is at the user's target
microcomputer location p-7FFH, and the card is jumpered for address

/%% /ABAD
block 8pPP-87FFH in the S-1pP system memory map, a constant of 8PPPH
is added to the desired target address to determine the S-1pp address.
Target location § becomes S-1pp location 8PPPH, etc. The trap address
is written into locations 87FEH (low byte) and 87FFH (high byte).

Memory Interface

The DBM-1is interfaced to the target computer by one or two 24
pin DIP jumper cables. The length of these cables should be kept as
short as possible. Typical ribbon cable has a capacitance of approxi-
mately 22pf per foot. The DBM-1 cable option supplies three foot cables
of this type, which should be adequate for most applications.

If system capacitive loading and timing margins are small, or if
use of a longer cable is required, refer to Appendix E for the schematic
of a bi-polar memory buffer board. This board can be placed close to
the target system ROM sockets to eliminate the capacitive loading of

the ribbon cable.

-6-

-

4.0 JUMPER OPTIONS/SOCKET SELECT

DBM-1 requires users to select memory address blocks, ROM type,
polarity of certain trap signals, and several trap options. These
options are selected by installing jumper wires or by setting DIP
switches. The following sections discuss these options.

4.1 Address Select

The DBM-1 location in the S-1pP development computer's memory map
is selectable by switch SW1, as defined in figure 2. The card may be
o0

placed on any ‘2€boundary.

The jumpers and the address bits they represent are as follows:

Jumper ~ Address Bit
A ae) /!
B a2 \°°
C NERE A
o000

D Al4 —
E pls / 2°°

For example, to locate the card from location 8@PPH-8FFFH in the
S-1pp computer memory map, jumper as shown in figure 3.

Note that the absence of a jumper indicates a logic 1. An installed
jumper represents a logic 9.

4.2 ROM Type

The ROM type to be simulated is determined by which sockets on the
card are used for interfacing to the user's target microcomputer ROM
sockets, and by a switch selection*. Three different pinout interface
sockets are provided, as defined in figure #. (Only one type of ROM

may be simulated at any one time. 4

* See Appendix D for a description of software control select of ROM type.

.

an The ConNnnNnecToY F«7 TnaiLduLe Ligu LIl v UupY UV wew

A B C D E

R IR
SW1 > A11 A12 A13 A4 AL5 Jumper > Address Bit = p
l l l L L No Jumper - Address Bit =1
o o o
Switch 1
A B C D E
o o o o o
* Open = 2K ROM
SW2 * .
Closed = 1K ROMs (highest
location in memory
°c°° ° ° block should have
Bit 7 = 9)
Switch 2

(Normal Settings. See text
for options.)

Jumper for normal trap
P2 1 2 3 4 operation (not daisy-chained)

Figure 2
Jumper/Switch Select Summary

All
Al2
A13
Al4
Al5

=P,
=P,
=P,
=P,

1, no jumper

Jjumper
jumper
jumper
jumper

A B C D E

o o0 o o
SW1 1 I I I
o o o o
A1l Al2 Al13 Al4 Al5
Figure 3

Jumpering Example (8@PPH)

ROM

SOCKET POSITION

SW2-D**

2708, 27P8L, 27P8-1*
2758
23p8, TMS 47pp*

1 (Low 1K)
2 (High 1K)***

Closed -
(Highest Tocation
in memory block

should have

pest Bit 7 = P)
12716, 2716-1, 2716-2

™S 2516

2316E 3 Open
2616

TMS 2716 4 Open

* pin 18 should be grounded or active low in target microcomputer
**x See Appendix D for a description of software control of select
% Both 1K ROMs must have common AP-A9 and DP-D7 signals

Figure 4

DIP Socket Options

No External Qualify Signal

SW2-E
Closed

it s\l

Figure 5
Trap Qualify

53
3

fe o
©

Leading Edge Trailing Edge
Sample Sample

Leading Edge Sample

Sw2-B Sw2-C
Closed Open

VLA

Figure 6

Trap Address Sample

Two S-1PP Wait States

SW-2A
Closed

ool N

Figure 7

Wait State Select

-10-

e

4.3

4.4

4.5

Trap Qualify

The ROM being simulated may be part of an array on a memory board
within the user's system. Individual ROMs may be "selected" to drive
the board's internal data bus, but the board itself may not be selected
to drive the microcomputer bus. Since such selects would "fool" the trap
logic intd thinking a memory location had been accessed by the micro-
computer, a BOARD SELECT/ qualifier input is provided for the trap.
I1f not used, SW2-E should be CLOSED. (See figure 5.)

NOTE: Don't apply an external signal to the Qualify input with
SW2-E closed. Open the switch before applying the signal.

Trap Address Sample

The trap address match is sampled on either the leading or trailing
edge of the ROM's chip select control signal. Normally, the user's
microcomputer address lines are valid at the leading edge of the enable
so SW2-C should be OPEN, and SW2-B should be CLOSED. (See figure 6.)

NOTE: If changing switch settings for B and C with the card powered

up, don't close both SW2-B and SW2-C simultaneously. Open one switch
before closing the other.

S-100 Wait States

Wait states are required for S-1pp access to the DBM-1 (don't forget
that the user's target microcomputer accesses at full speed). Normally,
two states should be generated. In some S-1pp microcomputers, one wait
state may be sufficient. SW2-A selects one or two wait states for S-199

accesses. (See figure 7.)

B

3 4
J3 :)
P2 o o o 0 o ©0 o
PIN FUNCTION
P2-1 AUX OUT (daisy-chain)
p2-2 QUALIFY
P2-3 AUX IN (daisy-chain)
p2-4 GROUND
J3-1 N.O.
J3-2 QUALIFY
J3-3 TARGET RESET
J3-4 TARGET RESET (Open Collector)
J3-5 MATCH 1
J3-6 MATCH PULSE
- J3-7 MATCH 2
J3-8 GROUND
Figure 8

User Interface Signals

-12-

5.0

5.1

5.2

5.3

5.4

USER _INTERFACE SIGNALS

Several signals relating to the user's target microcomputer are
available to the user on a 16 pin connector P2. These include daisy
chain, qualify input, "match", and reset signals. The pinout of the
interface connectors is shown in figure 8, and each of these signals
is discussed in the following sections.

Daisy-Chain

The daisy-chain logic allows the trap address to be written at .
the top of the 4K block of memory when two DBM-1's are used. Using
box type contact jumper wire, connect the two boards as shown in
figure 9.

Qualify Signal

The qualify signal may be obtained from the user system's board
enable logic. If two DBM-1 cards are used, the qualify signal is
applied to both cards.

Match Signals

Buffered outputs from the Address Trap logic are provided to the
user. These signals and their polarities and timing are defined in
figure 10.

Reset Signals

When the S-100 development computer accesses the DBM-1 memory
block, output signals are provided which indicate to the user's target
microcomputer that the data returned by the Debug Memory is invalid.
The signals are stretched to approximately 100ms by a one-shot. One
signal is active high, the other is active low, open-collector, with
a current limiting resistor. It may be connected directly to the

user's target microcomputer power-on-reset node if desired.

-13-

This is valid

Trap LED
/ A NN
TRAP I l IIHIGH"
1234 CARD

TRAP "LOW"

@ 12 34 CARD

Ignore this
Trap LED

Figure 9
Trap Daisy-Chain

-14-

Ap - 1P Same as
(Ap - 11) Trap Address

O O)
m| u»m
o
-3

+
m

MATCH 1 | Cleared by next S-1PpP Access

-

- i i}

MATCH |]
PULSE | |
|

Signals available from "HIGH" card if two DBM-1s are daisy-
chained, except MATCH2 indicates MATCH of AP - 1P only.

Figure 10
Match Signals

-15-

6.0

DBM-1 ASSEMBLY PROCEDURE (KITS ONLY)

Users with DBM-1 kits should follow this assembly procedure. The

following tools are suggested for this assembly procedure.

1. Low power soldering station, such as the Weller W-TCP, or a 25 watt
watt soldering iron with a 1/16" tip. Use only 60/40 rosin core solder
NEVER acid core solder or externally applied fluxes. Keep the soldering
iron clean by wiping it on a moist sponge. Solder should flow over the
joint after applying the tip of the iron for a few seconds. Don't hold
the iron on the joint for more than 10 seconds. !

2. Medium flat blade screwdriver.

3. Small diagonal cutters. Used to trim the leads of'resistors,

-capacitors, diodes, and transistors after soldering.

4. Small long nose pliers. Used to bend the leads of resistors.
Alternatively, a plastic lead bending tool may be used to bend the leads

for .4" spacéd holes.
5. Silicon grease. Apply this between the TP22p voltage regulator, |

heat sink, and P.C. foil, to improve the thermal conductivity and

efficiency of the heat sink.

-16-

-

6.1

(L

(4

U

(

(A

A

rimiuin o

Assembly Instructions

Refer to the assembly drawing (Appendix B) and parts 1ist (Appendix
C) while following the assembly procedure.

First, carefully check the parts supplied against the parts list
using the open spaces on the right edge of the parts 1list. Also, care-
fully inspect the PC board for shorts; this is a very important step.

1. Mount and solder diodes D1, and D3-20. Be sure that the banded

end of the diode matches the band indicated on the PC board silk screen.
2. Mount and solder resistors R1-7. Mount and solder resistor networks
RN1 and RN2. Be sure that the dot or diagonal corner on the resistor
'network matches the diagonal corner on the PC board silk screen.

3. Mount and solder IC sockets at locations 1, 2, 3, 4, 6, 7, f1, 14,
15, 16, 21, 22, 23, 25, 29, 30, 36 and POSITION J3. If the IC socket
option'was ordered, mount and solder sockets at the remaining IC locations.
Insert the socket so that the Pin 1 indication matéhes that of the PC
board. Solder two corner pins of each IC socket first - then make sure
the socket is fully inserted and that all the socket pins enter their
PC holes before soldering the remaining pins.

4. Mount and solder the 100uf electrolytic capacitor at location C4.
Be sure the + lead of the capacitor matches the + indication on the PC
board silk screen.

5. Mount and solder all remaining capacitors. Use .033uf disc capa-
citors at the non-polarized locations, and 2.2uf tantalum capacitors

at the polarized locations. Be sure that the + end of tantalum capa-
citors match the + indication on the PC board. One of two styles of

2.2uf tantalum capacitors will be supplied. Use the appropriate holes

1

on the PC board for the capacitor style provided.

(V) 6. Coat the top and bottom of the heat sink with a thin layer of
silicon grease. Also coat the PC board heat sink areas, and the bottom
of Reg-1. Mount Reg-1 and its heat sink using the supplied 4-40 screw
and nut.

(Vﬁ// 7. Install the 5 position DIP switch at location SW2. Insert it into

(/{// the right most holes of the DIP PC pattern.
(8. Install the right angle post connector at location P2 as shown.

The short sections of the pins are inserted in the board.

(”/; 9. Mount and solder the red LED at location D2. The flat edge of the
{.pf LED is the cathode, and should correspond to the bar of the diode

symbol on the PC board silk screen, as shown.

(’/; 10. Carefully inspect the board for solder bridges, unsoldered connectors,
and cold solder joints.

(V§ 11. DBM-1 is now ready to power up. Insert the board in the S-100 bus
and measure the supply voltage before jnstalling any ICs. There should
be a power supply voltage of +5V at the IC sockets. If the power supply
indicates normal voltage and there are no signs of component overheating,
turn off power and add the ICs to the board per the assembly drawing'in
Appendix B.

If the power supply does not jndicate correct voltage, find and

repair this problem before continuing with IC insertion. Once again,

when soldering ICs into the PC board be sure that IC Pin 1 matches

-18-

.

A

the PC board Pin 1. Solder the two corner pins of each IC first, then
make sure that all the IC leads have entered their PC board holes before
soldering the remaining IC pins. Care should also be exercised when
plugging ICs into those positions previously socketed to insure that

all leads penetrate the socket and make contact.

12. Turn on the power and once again measure the power supply voltage.
If the voltage is correct, the assembly procedure is complete. Install
address select jumpers at SW1 as detailed in Section 4.1. Set the

ROM select and trap options in Switch SW-2 as described in Section

4.2 -~ 4.5.

-19-

7.0

7.1

DEBUG _MONITOR

Debug monitor is a small system monitor program designed to
make it easier to use the Pragmatic Designs DBM-1 development module
for applications program development. The monitor maps the appli-
cation memory space into the DBM-1 mehory addresses, controls the
setting of the DBM-1 trap addresses, allows users to examine, dis-
play and fill either system or DBM-1 memory locations, and performs
several other useful utility operations.

Debug monitor is provided in source listing form. This allows
users to make any required changes and to locate the program inside
their own system. The source listing is for a version of the program
designed to run with the CP/M operating system. Users with this |
system may use the monitor as provided. Section 7.13 describes what
portions of the program must be modified to place the program in
PROM or to use it with a different operating system.

Debug Monitor Commands

Debug monitor has ten basic commands. The commands are input
as a single character designator followed by the data required by
the command. The commands are as follows:

A Hexadecimal Arithmetic

c set/Reset DBM-1 Chain flag
Dump memory contents
Fi1l memory with constant
Clear Trap LED

Move memory block

o =X rm~ ™m O

Set DBM-1 memory offset

-20-

1.2

S Examine/substitute memory contents

Set DBM-1 Trap address

) Test R/W memory

Each of these commands is explained in the following sections.

Mapped Commands

The commands D (dump), F (fi11), M (move), and S (substitute)
are mapped commands. This means thatvthey can operate on either the
system memory (normal operation) or the target processor/DBM
memory (mapped operation). In normal operation, the commands use
the address inputs as they are given by the user. In the mapped
mode the command adds the current offset bias (as set by the 0
command) to the input address. Mapped operation is indicated by
preceeding the input with a period (.).

The mapped commands are useful to allow the use of the original
application source program addresses when the DBM-1 is actually
located at a different place in the S-100 system memory map.

For example, suppose the DBM-1 is located in address block
8000H in the system memory. When using DBM-1 with a target program
ORGed at 0, the user would have to mentally add 8000H to all program
addresses when changing or examining the memory. The mapped commands
perform this operation automatically.

Example:

In the above case (DBM-1 at 8000H), the following would

be needed to set the DBM/target address mapping

>08000 (set the offset)
>.S0 (examine target address 0/DBM address 8000H)
-21-

CVUCSTEINT MAY USE LI HVITIVWI WMo py vy »— =~

7.3

Only commands which access
any of the other monitor commands

The mapped commands are des
space from 0 - FFFH (0 - 4096 byt
than 4K of contiguous debug stora
cards and using the same procedur
$-100 address block, i.e., three
$-100 system would still use offs

Using more than two DBM-1s

The trap is only 12 bits long, an

memory can be mapped; preceeding
with a period has no effect.

igned to map a target address

es) into one or two DBM-ls. More
ge can be used by adding more

e to set the address offset for the
DBM-1s from 8000H to 97FFH in the
et = 8000H.

has an effect on the address trap.

d is thus limited to a range of

4096 bytes. The trap logic and how it is set is discussed more

completely in section 7.12.

General Command Format

A1l debug monitor commands are input from the system keyboard,

and all outputs are directed to t
are located within the monitor an
program to any system.

The monitor command prompt
Whenever this prompt is displayed
input. A1l input lines are termi
than one value is required by a €
be enterred separated by commas,
carriage return.

A1l numberic data is input

he system display. These drivers

d may be changed to adapt the

is the greater than symbol (>).
the program is waiting for user
nated by carriage return. If more

ommand, all required values should

the last value terminated with a

in hexadecimal form. Leading 0's

do not need to be enterred, and enterring more than 4 digits causes

the last four digits enterred to

be the same as enterring 1.

-22-

be used; i.e., enterring 10001 would

7.4

7.5

A11 monitor error conditions display the error prompt 7
and re-prompt for a new command.

A Command - Hexadecimal Arithmetic

The A command is used to add, subtract, multiply, and divide
two hexadecimal numbers. The first number is input, followed by one
of the operators + - * /, followed by the second number. The result
is displayed on the next line. i

Example:

>A1000+6
1006

>A1000-5
FFFB

>A135E*9
AE4E

>A1000/6
02AA

>

The arithmetic commands are useful for computing offset

addresses, program constants, memory displacements, or data values.

C Command - Set Multiple DBM-1 Chain Flag

The C command is used if two DBM-1s are being used together
to form a single 4096 byte address block. This is done by connecting
the DBM-1 trap daisy chain lines together (see section 5.1). In
these applications the trap address is written at locations 4094 and
4095 of the block, rather than at locations 2046 and 2047 of a single
DBM-1. The monitor initializes to one DBM-1, but users with two

DBM-1s can modify the monitor to change the default.

-23-

7.6

7.7

When using the C command, Cl means set one DBM-1, C2 means
set two DBM-1s. 1 and 2 are the only legal operators.

D Command - Display Memory Block

The D command is used to display a block of memory locations.
The command expects two parameters, separated by commas. The
contents of the range of locations specified will be displayed on
the console. The command is valid for mapped operation, and will
display the location specified offset by the current DBM-1 memory
block offset constant (see Sections 7.2 and 7.9).
Example:
>D100,11F
0100 00 01 02 03 04 05 06 07 08 09 OA 0B OC 0D OE OF
0110 10 11 12 13 14 1516 17 18 19 1A 1B 1C 1D 1E 1F
>

F Command - Fill Memory With Constant

The F command is used to fill a block of memory with an eight
bit data constant. Three parameters are input separated by commas.
The first parameter is the start address, the second is the end
address, and the third is the hexadecimal data constant. The command
is valid for mapped operations.

Example:

The following example would £i11 locations 100-1FF with

zeros.
>F100,1FF,0

>

-24.-

7.8

7.9

7.10

L Command - Clear Trap LED

The L command accesses the memory block to turn off the trap
LED. This is useful during program debugging. Program execution
can be traced by setting traps, watching the trap LED, clearing the
LED, debugging the program section, and setting a new trap. (Note:
setting a new trap address automatically clears the trap LED.)

M Command - Move Memory Block

The M command is used to move a block of memory locations
from one point in the memory to another. The command expects three
parameters. The first is the starting address of the block to be
moved, the second is the end address of the block to be moved, and
the third is the first address of the destination. The command is
valid for mapped operations.

Example:

The following example would copy the block of locations
from 1000-100F to locations 1100-110F.

>M1000,100F,1100

>

0 Command - Set DBM-1 Memory Offset

The 0 command sets the memory mapping offset for use with the
other debug monitor commands. The offset will be added to all
mapped commands when they are input preceeded by a period. The use

of the offset simplifies program changes and examinations by elimi-

nating the need to mentally add the bias to all memory access commands

involving the DBM-1. The default offset is 0O (not mapped), but

this can easily by changed to suit the user's particular system.

o

7.11 S Command - Examine/Substitute Memory

The S command is used to examine and change the contents of
system memory locations. The command is valid for mapped operations.
The command initially expects one parameter, namely the
location where the operation is to begin. It displays the contents
of that location and waits for a user input. A carriage return
causes the next location to be displayed, a minus sign (-) causes
the previous location to be displayed, a number from 00-FF will
replace the current contents of the location and a period (.) will
return to the monitor command loop.
Example:
The following example shows the use of the S command.
>5100
100 00
101 01 35
102 02 -
101 35 .
>

7.12 T Command - Set DBM-1 Address Trap

The T command is used to set the DBM-1 hardware address trap.
The trap is used to indicate when the target program has reached a
certain point. The trap address is stored in the two most signi-
ficant bytes of the DOM-1 memory block. If a single DBM-1 is used
the locations are 2046 and 2047 (Q;FEH and QZFFH); if two DBM-1s
are chained (indicated by using the C2 command) the locations are

4094 and 4095 (OFFEH and OFFFH).

-26-

Example:
The following example shows how to set the DBM-1 address
trap at location 135 of the target program. When this
location is accessed by the target processor, the trap
LED will light and the address trap match signals will
be generated by the DBM-1 hardware.
>T135
>
The trap will remain set until a new value is enterred.
When using the trap address it is important to understand both
the trap logic and how it relates to the DBM-1 address space. The
algorithm used for computing the locations where the DBM-1 trap
address is written is as follows:
If one DBM-1,
M = OFFSET + 800H - 1
If two DBM-ls,
M = OFFSET + 1000H - 1
For example, in a system with a single DBM-1 located
at 8000H in the $-100 system, M = 8000H + 800H - 1 =
87FFH. The most significant byte of the trap address
would be written at location 87FFH; the least significant
byte would be written at 87FEH.
The trap address itself is only 12 bits long and can only be
set for a 4096 byte range of addresses. The debug monitor sets the
address trép for the 4K block; the most significant bits are not

used. Thus, enterring a trap address of 16FEH would result in a trap

«27=-

7.13

7.14

address of 6FEH being used. Users with more than 4K of debug
storage or emulating application computer memory outside the range

0 - FFFH may want to modify the trap and/or offset routines to match
their system requirements.

V Command - Verify Memory

The V command is a simple memory test designed to detect
bad devices. The command expects two parameters. The first is the
start address of the block to be tested and the second is the end
address of the block. The program writes 256 patterns (0 - FF)
into each location in the block. The original contents of the
block are not changed. If the block passes, the monitor returns t
with the normal prompt. If a location fails, the address, value
written, and value read are displayed. The test.stops on the first
location which fails.
Example:
The following example shows the output if, while testing
the memory block from 1000H to 1FFFH, locations 1067 is
written with a 10H and reads back a 11H (bit O stuck).
>V1000,1FFF
1067 W10 R1l
>

Monitor Modifications

Debug monitor is provided in source form to make it easy to
implement user modifications. The most common modifications will
involve the I/0 and the location of the actual program. These are

discussed in the following sections. -

-28=-

7.14.1 1/0 Modifications

A1l debug monitor 1/0 is performed using the routines CONIN
(Console Input) and CONOUT (Console Output). CONIN should return
an upper case ASCII character with the parity bit set to 0 in the A
register. CONOUT should be passed an ASCII character in the C
register.

The system where debug monitor was developed (CP/M) automati-
cally echoes characters input via CONIN to the console. The user
system may need to add a routine to do this. For example:

CALL COMIN

Mov C,A

CALL CCNOUT

MOV A,C

7.14.2 Memory Changes

Debug monitor is ORGed at 100H to run with a CP/M development
system. This can be changed by changing the ORG statement. The
program can be placed in PROM by ORGing the program in the PROM area
and ORGing }he system RAM in an area of scratch RAM. The program
is undef'ik byte long and will fit into a single 2708/2758 EPROM.
The program uses 51 bytes of RAM, and most of this is reserved for
the 8085 stack.

Example:

The following ORG statements would locate Debug Monitor

at OCOOOH with its RAM at location 100H.

«29-

7.15

ORG O0COOOH s PLACE PROGRAM AT OCCOOH

(program body)

ORG 100H ;PLACE RAM AT 100H

Loading and Saving Programs

Because of the wide variety of systems which can use DBM-1,
the Debug Monitor does not include any commands for loading or
saving the object program to be run by the application computer.
Small programs can be enterred directly using the S command. Larger
programs can normally be loaded directly iﬁto the DBM-1 using the
system disk or tape load utilities. The spare commands in the
monitor master command table can be used to add the system calls
required to perform file loading and saving in the users system.

Users may also want to add command to control an EPROM pro-
grammer. Once the program is debugged using DBM-1 it can be
transferred to an EPROM and installed in the target computer for

final testing.

-30-

o,

F/M MACRO ASSEM 2.0 $001 PRAGMATIC DESIGNS DEEBUG MONITOR

-

TITLE 'PRAGMATIC DESIGNS DEBUG MONITOR’

PRAGMATIC DESIGNS» INC. DEBUG MONITOR
REV. 1.0

COPYRIGHT (C) 1978y 1979
ALL RIGHTS RESERVED

@ WP WS WS W> W €) 8 - .

¢ 0D = CR EQU ODH 2 X
LI0A = LF EQU oaH 77
003E = PROMFT EQU 1y
(IIF = HUH EQU ‘e
(05 = SYSTEM EQU 5
y
5
;
; INITIALIZE SYSTEM
’
100 ORG 100H $ORG IN CP/M TPA
100 C34E01 JMF BEGIN
0103 ODOAS0S2415IGNON: DB CRsLFy‘PRAGMATIC DESIGNS DEBUG MONITOR» REV. 1.0’
~12E ODOAODOAA43 DE CRyLF»CRyLFy/COPYRIGHT (C) 1978 1979‘sO0FFH
y
’
014F = BEGIN EQU %
14B 31C904 LXI SFySTACK
J14E 210000 LXI HyO $SET INITIAL OFFSET = 0
0151 22CA04 SHLD OFFSET
1154 AF XRA A $SET INITIAL VALUE = NOT CHAINED
1155 32CC04 sTA CHAINF
0158 210301 LXI Hy SIGNON
n1SE CDOEO4 CALL TYPE $DISPLAY LOGON MESSAGE
15E CIFFO3 CALL CRLF ;
y
; MAIN COMMAND LOOF
y
J161 = START EQU s
0161 FB EI $ ENABLE INTERRUPTS
7162 CIFFO3 CALL CRLF
165 OE3E - MVI CyPROMFT
0167 CDE103 CALL CONOUT #DISPLAY PROMFT
016A AF XRA A $ASSUME NORMAL COMMAND
716F 32CD04 STA CFLAG
016E CDEEO3 CALL CONIN # GET A CHARACTER
0171 FEZ2E cPI ‘.’ 5. => MAPPED COMMAND
0173 C27E01 JINZ START1
0176 3EO1 MVI Arl
0178 32CDOA STA CFLAG $SET FLAG
017E CDEEO3 CALL CONIN $BGET ACTUAL COMMAND
y
017E = START1 EQU s

21
1% Le timmd A aAdA *ho cvetTom Al

/M MACRO ASSEM 2.0

D17E
0180
2183
0185
"188
2189
018C
018D
018E
018F
0190
0191
0192

0193
0193
0195
0197
0199
019R
019D
019F
01Al
01A3
01A5
01A7
01A9
01AR
01AD
01AF
“1R1

L B3
U1BS
01R7
O1EY
O1RE
O1RI

D641
FA6101
FE16
F20303
87
219301
8%

6F

7E

23

66

6F

E?

BFO1
n303
2702
3R02
0303
7002
n303
n303
n303
0303
0303
ABO2
AFO02
n303
1003
n303
n3o3
D303
2703
7403
0303
8A03

TELE

-

$002

sul
JM
CFI
JF
ADD
LXI
ADD
MOV
MOV
INX
MOV
MOV
FCHL

COMMAND

EQU
nu
oW
W
oW
W
[
DW

-

(")
oW
nw
oW
I
W
oW
W
oW
nw
nw
oW
DW
I

FAGE

PRAGMATIC

IA/
START
IUI_IAI+
ERROR

A
HyCTBLE
L

LyA

ArM

H

HeM

LsA

- W Q> = W W

«s W W W W €

DESIGNS DEBUG MONITOR

TEST FOR A-X
LESS THAN ‘A’ RETURN TO START

GREATER THAN ‘S’ RETURN TO START
x 2
FWA OF COMMAND TAELE

COMFUTE TABLE ADDRESSs PUT IN HEL
GET LSE OF ADDRESS

POINT TO NEXT ADDRESS

GET MSE OF ADDRESS

LSE TO L REGISTER

BRANCH TO COMMANDED ROUTINE

BRANCH TAELE

ARITH
ERROR
CHAIN
NUMF
ERROR
FILL
ERROR
ERROR
ERROR
ERROR
ERROR
LTRAF
MOVE
ERROR
SETOFF
ERROR
ERROR
ERROR
SURS
TRAF
ERROR
VERIFY

W € WF WP WF W € W W W Wr W €S WP W @ W € - € €> 6

- ARITHMETIC WITH HEX NUMBERS
- SFARE COMMAND

- SET CHAIN FLAG

- DUMF MEMORY

- SPARE COMMAND

- FILL MEMORY WITH A CONSTANT
- SPARE COMMAND

- SFARE COMMAND

- SPARE COMMAND

- SFARE COMMAND

- SPARE COMMAND

CLEAR TRAF LED

- MOVE MEMORY

- SPARE COMMAND

- SET DEM OFFSET ADDRESS
- SPARE COMMAND

- SPARE COMMAND

- SPARE COMMAND

- SUBSTITUTE MEMORY

- SET DEM-1 ADDRESS TRAF

-~ SFARE COMMAND

- VERIFY MEMORY (TEST RAM)

CC—GU)Z'Q"JOZII"ZL.HIQ'HM’:GED
!

-32-

F/M MACRO ASSEM 2.0

O+ BF
O1ERF
¢ C2
¢ C3
01CS
e+C8
(C9
O1CA
oiCh
(CE
¢.0o
o1n3
N4
(DS
o108
0109
t DR
C1IE
01E0
(.E3

LES
01E8
~1EA

LED

+1FO0
01F0
iF1

iF4
viF4
01FS
1Fé
1F7
01F8
~1F9?
1FA

v1FD
O1FD
1FE
1FF

9202

202

0203

2 A

Ch4204
78
FEOD
CAD303
48

ER
Cna204
78
FEOD
C20303
41

ER
CIFFO3
78
FE2R
CAFO001
FE2D
CAF401
FE2A
CAFLO1
FE2F
CAOCO2
C3n303

19
c32102

7D
93
6F
7C
9A
67
€32102

AD
44
210000

7B
B2

RITH

ADI

nns

N e e

S URTS

X e W

ULTS

#
MULTS1

$003

ARIT

EQU
CALL
MOV
CFPI
JZ
MOV
XCHG
CALL
MOV
CFI
JINZ
MOV
XCHG
CALL
MOV
CFI
JZ
CFI
JZ
CFI
JZ
CFI
JZ
JMF

NUMBE
EQU

DAD
JMF

SURTRACT

EQU
MOV
SUE
MOV
MOV
SER
MOV
JMF

MULTIFLY

EQU
MOV
MOV
LXI
EQU

MOV
ORA

R CiIN]

PRAGMATIC DESIGNS DERUG MONITOR
H - PERFORM HEX ARITHMETIC
$
ARIN $GET VALUE AND DELIMITER
AvE $TEST DELIMITER
CR $ ILLEGAL HERE
ERROR
CsRE $SAVE AS OPERATOR
$FLIF VALUE INTO DE
ARIN $GET SECOND
AsR $TEST DELIMTER
CR
ERROR $ONLY LEGAL
EsC $RESTORE DELIMITER
$PARM1 ->» HL 3 PARM2 -> DE
CRLF $OUTFUT LINES
AR
) I+I
ADDS sALD
SURTS $SUBTRACT
I*I
MULTS SMULTIPLY
I/I
nIvs sDIVIDE
ERROR s ILLEGAL
RS
$
I
ARITH1 $#THATS ALL FOLKS
$
ArL
E &
LA
ArH
D
HyA
ARITH1
- (REPEAT ADID)
:
CyL
ByH
HyO
$
AYE
D

vimnm fee)

=33~

F/M MACRD ASSEM 2.0 #004 PRAGMATIC DESIGNS DEBRUG MONITOR

0204 CA2102 JZ ARITH1

0207 09 DAD B $ADD 1

0208 1R nex D $DECREMENT COUNTER
0209 C30202 JMF MULTS1

DIVIDE - (REPEAT SUBTRACT)

™ - W W

020C = 1TVS EQU $

020C 7B MOV AvE

02001 B2 ORA n $DIVIDE BY 07

020E CAD303 JZ ERROR s ILLEGAL

n211 7B MOV AsE $FORM 2’6 COMFLEMENT

vlid 2F CHA

0213 4F MOV CsA

0214 7A MoV AsD

0215 2F CMa

0216 47 MOV . EvA

0217 03 INX B

0218 11FFFF LXI Niy—-1
¥

0218 = (RRVEH EQU $

D21k 13 INX D

GTic 09 A R $ SUBTRACT

;240 DALBO2 JC DIvVs1

0220 ER XCHG $GET QUOTIENT
’
’

0221 = ARITHL EQU $

0221 CI7104 CALL LADR $FPRINT ADDRESS

0224 C36101 JMF START '
14
’ CHAIN - SET DEM-1 CHAIN FLAG. 1 = 1 DBM-1 (DEFAULT)
H 2 = 2 DBEM-1’S ‘
y

0227 = CHAIN EQU $

"7 CD1A04 CALL EXFR1 $GET 1 VALUE
oA El FOF H ‘

0228 7D MOV AsL $}USE LSE AS FLAG

022C 3D ICR A

0220 FAD303 JM ERROR

0230 FEOZ CFI 2 $ 1 & 2 DNLY LEGAL VALUES

0232 F2D303 JF ERROR

0235 32CC04 STA CHAINF

0238 C36101 JMF START
14
y
H DUMF - DISPLAY MEMORY CONTENTS ON CONSOLE
’

D3R = DUMF EQU $

T3n CDIFO4 cAaLL EXFPR2 $GET 2 PARAMETERS

L23E D1 POF D $ GET HIGH ADDRESS INTO D

023F E1 FOF H $ GET LOW ADDRESS INTO H
14

0240 = DUMF1 EQU $

0240 CDFFO3 CALL CRLF

0243 Cn7104 . cALL LADR $ PRINT MEMORY ADDRESS

LY,

/M MACRD ASSEM 2.0 #0055 PRAGMATIC DESIGNS DEBUG MONITOR

-

’
D246 = DUMF2 EQU $
0”446 CDO?04 caLL SFACE # PRINT A SFACE
0 49 3ACDOA4 LDA CFLAG $ MAFFEDT
0z4C B7 ORA A
0240 CASEO2 JZ DUMF 3 #NO
0 50 220004 SHLD STARTR $SAVE ORIGINALS
033 ER XCHG
0254 220204 SHLD ENDE
0757 2ACA04 LHLD OFFSET $ADD OFFSET BIAS
¢ S5A 19 DAD n
¥
QaSE = DUMF3 EQU $
¢ Sk 7E MOV ArM
0=5C Ch7604 CALL LERYTE # PRINT DATA
025F 3ACDO4 LIA CFLAG $ MAPFED?
¢ 62 B7 ORA A
C 63 CALDO2 JZ DUMF4 iNO
0266 2AD204 LHLID ENDE $RECOVER ORIGINALS
¢”69 ER XCHG
(6A 240004 LHLD STARTE
y
Q260 = DNUMF 4 EQU $
¢ 60 23 INX H $MOVE TO NEXT LOC.
C26E C6BOA4 CALL CMFHLIE $ TEST FOR COMFLETION
0271 DAL101 JC " START 3 RETURN TO COMMAND ROUTINE
« 274 70 MOV Avl
275 E&OF ANI OFH $ PRINT CRLFs ADDRESS ON MULTIFLE OF 16
0277 C24602 JINZ DUMF2
~274 C34002 JMF DUMF 1

FILL - FILL RAM WITH A CONSTANT

T} > e @

270 = ILL EQU %

.270 CD2404 CALL EXFR3 $GET 3 PARAMETERS
0280 C1 FOF B # FPUT CONSTANT IN B
281 D1 FOF D # GET HIGH ADDRESS
282 3ACDOA4 LDA CFLAG $MAFFEDT
0285 RBR7 ORA A
0286 CABEOZ JZ FILL1 #NO

289 2ACA04 LHLD OFFSET #AID RIAS
v28C 19 DAD I
0280 ER XCHG
14

28E = FILL1 EQU $
028BE E1 FOF H # GET LOW ADDRESS
~28F 3ACDO4 LD'A CFLAG $MAFFED?

292 B7 ORA A
0293 CA?DO2 JZ FILL2 #NO
0296 DS FUSH D

1297 EB XCHG

2298 2ACA04 LHLD OFFSET #ADD OFFSET
029k 19 DAD D

129C D1 FOF D

L4

0290 = FILLZ EQU $

- - -35-

ok g AP.TYIt A O WIIATECT Al) [od 1 BB " 4

'

F/M MACRO ASSEM 2.0

029D
029E
029F
02A2
0245

02A8
0248
G2AR
©02AC

024F
02aF
02R2
02E3
02ké
02E7
N2RA
CZBR
02RE

O2EF
02BF
02C2
02C3
02Cé
02C7
02CA

02CR
O2CH
O2CE
02CF
0200
0203
0204
0205
0208
0209

02DA

ey A
'Y e

veDE
020F
02E0
02E1
02E2
02E3
02E6
02E7
O2EA

71
23
Cnéso4
p29002
C36101

Cnsé04
7E
C36101

Ch2404
El
3ACDO4
B7
CAEFO2
EER
2ACA04
19

22CE04
El
CACRO2
EE
2ACAO4
19

220204
EER
El

‘CADAOZ

U
EE
2ACAO04
19
D1

220004
7R
95
4F
74A
9C
47
DAD303
03
2ACEO4
7R

TRAF

T e @ e

OVE

4
MOVE1

" MOVEZ2

’
MOVE3

#006

MOV
INX
CALL
JNC
JMF

LTRAF -

EQU
CALL
MOV
JMF

PRAGMATIC DESIGNS DEBUG MONITOR

MsC $ STORE CONSTANT IN MEMORY
H $MOVE TO NEXT LOCATION
CMPHLDE 5 TEST FOR COMFLETION

FILLZ2 5 CONTINUE IF NOT DONE
START $ RETURN TO COMMAND ROUTINE

CLEAR TRAF LED

$

LTOF $GET TOF ADDRESS OF BLOCK
ArM $READ CLEARS LED

START

MOVE - MOVE A BLOCK OF MEMORY

EQU
CALL
FOF
LA
ORA
JZ
XCHG
LHLD
DAD

EQU
SHLI
POF
JZ
XCHG
LHLD
DA

EQU
SHLID
XCHG
FOF
JZ
FUSH
XCHG
LHLD
DAD
POF

EQU
SHLID
MOV
SUR
MOV
MOV
SBE
MOV
JC
INX
LHLD
MOV

$

EXFR3 $GET 3 FARAMETERS

H $GET DESTINATION ADDRESS
CFLAG i MAFFEDT

A

MOVE1

OFFSET §#ADD OFFSET
I

$
DESTE $SAVE IT
H $GET END' ADDRESS

MOVEZ2 $NOT MAFFED

OFFSET #ADD OFFSET

i

$
ENDE $SAVE IT
$FLIF INTO DE
H $GET START ADDRESS
MOVE3 $NOT MAFFED
n

OFFSET $#ADD OFFSET
D
D

$

STARTE

AvE $ COMPUTE BLOCK SIZE
L .

CrA $AND PLACE IT IN BC
Ayl

H

ByA

ERROR $IF DE < HL» ERROR
E

DESTR

AsE $TEST FOR DEST < END

~r

F/M MACRO ASSEM 2.0

0 ER
O:EC
02ED
0 EE
O EF
02F2
C2FS
¢ Fé
02F7
02F8
(F9

('FC
02FC
¢2FD
¢ 'FE
G2FF
0300
« 301
302
0303
~306

209
w309
030A

30R

30C
030D

310
u310
0311

312
-313
0314
"315

316
0317
N31A

)31D0
Y310
0320
2321
2324

25
7A
9C
ER
2A0004
DAFCO2
7R
95
7A
9C
020903

7E
12
23
13
OR
79
EO
C2FCO2
C36101

ER
09
2K
ER
2A0204

7E
12
2B
iR
OR
79
RO
€C21003
C36101

CD1A04
El

22CA04
C36101

PRAGMATIC DESIGNS DEBUG MONITOR

$NOW SEE IF DEST > START

CARRY

CARRY

LENGTHy

=>» NORMAL MOVE

=» NORMAL MOVE

HL

STARTs DE

$ADD LENGTH TO DEST

$ COMPENSATE FOR LENGTH

$ADD LENGTH TO END

$D0 INVERTED MOVE

SETOFF - SET DBM-1 OFFSET ADDRESS

#007
SUE L
MOV AsD
SEE H
XCHG
LHLD STARTE
JC MOVEA4
MOV AvE
SUE L
MOV AsD
SBE H
JNC MOVES
’
$ NORMAL MOVE. BC =
y
MOVEA4 EQU $
MOV ArM
STAX D
INX H
INX I
DCX B
MOV AsC
ORA B
JNZ MOVEA4
JMF START
; :
INVERTED MOVE.
’
MOVES EQU $
XCHG
DAD B
DCX H
XCHG
LHLD ENDE
)
MOVEé EQU $
MOV A M
STAX D
DCX H
Dnex D
nex R
MOV ArC
ORA B
JNZ MOVES6
JMF START
;
;
’
SETOFF EQU $
CALL EXFR1
POF H
SHLD OFFSET
JMF START

s W W @

$GET 1 PARAMETER

§SAVE IT

DEST

SUBS - SUBSTITUTE MEMORY CONTENTS ROUTINE

-37-

/M MACRO ASSEM 2.0 $008 PRAGMATIC DESIGNS DEBUG MONITOR

2’327 = SURS EQU $
)327 CD1A04 CALL EXPR1 $GET 1 PARAMETER
0324 E1 POF H
y

Y32R = SURS1 EQU $
)32F CIFFO3 CALL CRLF
)32E CN7104. CALL LADR $DISFLAY ADDRESS
D331 CDO904 CAaLL SFACE $sDISFLAY SPACE
D334 220004 SHLI STARTEB $SAVE USER INFUT ADDRESS
~7177 3ACDOA4 LDA CFLAG $MAFFEDT

B7 ORA A

LA4303 JzZ SUBS2

ok EB XCHG
033F 2ACA04 LHLD OFFSET $#ADD OFFSET
0342 19 DAD n
¥

0343 = SURSZ EQU $
0343 7E MOV ArM $ DISFLAY DATA
0344 CN7604 CALL LBRYTE $DISPFLAY DATA
0347 CDO%04 CALL SFACE
034A CLEEO3 CaLL CONIN $GET USER CHARACTER
034D: FEOD CFI CR $CR -» GET NEXT BYTE
034F CA4CO3 JZ SURS3
0352 FE2D CFI i $- =» BACK UF
0354 CA7303 JZ SURS4
0357 FEZ2ZE CFI ‘8 #. =» DONE
0359 CA6101 JZ START

INFUT DATA AND USE IT TO REFLACE MEMORY BYTE

. €» @

035C ES FUSH H $ SAVE MEMORY ADDRESS
035D 210000 LXI Hs O $ENTER EXPRESSION ROUTINE
0360 CDABOA CALL ARINZ2 $WITH FIRST CH. SET
0343 ER XCHG $# E = NEW VALUE
L3464 E1 FOF H $ RESTORE MEMORY ADDRESS
U365 73 MOV MsE $ STORE NEW VALUE
0366 78 MOV AsE $ TEST DELIMITER
0367 FEOD CFI CR
03469 C2D303 JNZ ERROR $ONLY LEGAL DELIMITER
?

036C = SURS3 EQU $
036C 2ADN004 LHLD STARTB $RECOVER INFUT ADDRESS
036F 2% INX H
0370 C32E03 JMF SURS1

TIT3 = SUES4 EQU $

2401004 LHLD STARTR $SRECOVER INFUT ADDRESS

L s/&6 2R ncx H
0377 C32B03 JMF SUES1

TRAF - SET DBM-1 ADDRESS TRAF

-f W W e

0374 = RAF EQU $

037A CD1A04 CALL EXPR1 $GET 1 PARAMETER

037D C1 POF B $SET ADDRESS IN BC

037E CDS604 CALL LTOF $COMPUTE TOP ADDRESS OF DEM BLOCK
0381 78 MOV AsE $GET MSE

-38-

Mo

d

| .

| -

F/M MACRO ASSEM 2.0

¢ 82
0384
0385
« 186
¢ 387

0384A
N3BA
isn
v38E
038F
390
391
0392
~393
394
0395
0398

w399
0399
394

039C
n39C

390
V3%7E
039F

1342
JI3A3
03A6
13A7
)3A8
03A%
03AA
J3AB
O3AE

J3B1
J)3R1
03E2
03RS
03E8
O3RE
O3RD
03C0
03C1
03C4
03C7
03C9
03CC
03CD
0300

w-rg p

E6OF
77

2B

71
C36101

CD1FO4
D1
El
7R
95
4F
7A
9C
47
DAD303
03

56

1E00

73
7E
EE
C2B103
iD
C29C03
72
23
OR
79
EBO
C29903
C36101

S7
CDOFFO3
Cn7104
Cno904
OEF7
CDE103
7B
CDh7604
Cno?04
OES2
CDE103
7A
Cn7604
C36101

ERIFY

-

’
VERIF1

4
VERIF2

;
VERIF3

$009

ANI
MOV
DCX
MOV
JMF

PRAGMATIC DESIGNS DEBUG MONITOR

OFH
MsA

H

MyC
START

VERIFY - TEST

EQU
CaLL
POF
POF
MOV
SUE
MOV
MOV
SEE
MOV
JC
INX

EQU
MOV
MVI

EQU
MOV
MOV
CMF
JINZ
DCR
JINZ
MOV
INX
DCX
MOV
ORA
JINZ
JMF

EQU
MOV
CALL
CALL
CAaLL
MVI
CALL
MOV
CALL
CALL
MVI
CALL
MOV
CALL
JMFP

$
EXPR2
D

H

AYE

L

CsA
AsyD

H

EBsA
ERROR
R

$
DyM
EsO

$

MyE
ArM

E
VERIF3
E
VERIF2
MeDN

H

R

ArC

B
VERIF1
START

$

DsA
CRLF
LADR
SPACE
Cy’W’
CONDOUT
AYE
LBYTE
SPACE
Cy’R’
CONOUT
AsD
LRYTE
START

$MASK TO 4K RANGE
$SET MSE

MEMORY

$GET 2 PARAMETERS
$GET END
$GET START

$COMFUTE COUNT

$# END < START ILLEGAL

$SAVE CONTENTS

FWRITE

SWRITE 256 PATTERNS/LOC

fRESTORE ORIGINAL

$SAVE ERRONEOUS VALUE
$WRITE ADDRESS

#SHOW WRITTEN

$SHOW READ

-39-

F/M MACRO ASSEM 2.0

0303
0303
03Dé
0309
030K
03DE

03E1
N3E1L
G3IE2
03E3
03E4
03ES
03E7
03EA
03EER
03EC
O3ED

O3EE
03EE
O3EF
03F0
03F1
03F3
03F 6
03F7
03F8
DIF?

R

03FE

31C?04
CLOFFO3
OE3F

CDE103
C36101

CcS

Do

ES

59
0EO02
Cnosoo
El

D1

C1

c9

CS
nS
ES
OEO1
Cnosoo
El
D1
Cci
FEé1
F8
E6DF
co

Y
14
»
4
a
14
a
y
a
y
E

RROR

(D e s @ wr e ‘e

ONIN

. WP E» W € @

#010 PRAGMATIC DESIGNS DEBUG MONITOR

ERROR EXIT

THIS ABNORMAL EXIT IS EXECUTED FOR ALL MONITOR ERROR
CONDITIONS

EQU $

LXI SF»STACK

CALL CRLF

MVI CyHUH

cALL CONOUT

JMF

CONSOLE

ENT?
EXIT?

EQU
PUSH
PUSH
PUSH
MOV
MUI
CALL
FOF
POF
POF
RET

CONSOLE

ENT?
EXIT?

EQU
PUSH
PUSH
PUSH
MVI
CALL
POF
POF
POP
cPI
RM
ANI
RET

START $ RETURN TO COMMAND ROUTINE

OUTFUT ROUTINE (CF/M)

C = CHARACTER TO BE OUTFUT

$

B $SAVE ALL REGISTERS

D

H

EsyC $SET UP FOR CF/M CALL
Cy2 $BDOS CALL 2

SYSTEM DO IT

H {RESTORE ALL

n

B

INFUT ROUTINE (CP/M)

N/A

A = CHARACTER INFUT FROM CONSOLE
$SAVE ALL REGISTERS

Cr1 $BDOS CaALL 1

61H $UPPER CASET
NOT 20H $MASK OFF BIT 6

CRLF - PRINT CARRAGE RETURN AND LINE FEED

ENT?
EXIT?

N/A
N/A

-40-

F/M MACRO ASSEM 2.0

¢ FF
C.FF
0401
€04
¢ 06

09
0409
0R

40E
A0E
040F
~410
412
0413
0416
417

141A
v41A
041C

\41F
041F
~9421

0424
0424

0426
0426
0429
0424

Vel &

OEOD
CDE103
OEOA
C3E103

OE20
C3E103

4E

79
FEFF
c8
CDE103
23
C30E04

0EO1
C32604

0EQ2
C32604

OEO03

Cn4204
E3
ES

CRLF

U3 e e e e @ e

FACE

-—f wr wr W W W e

YFE

IT] e e e @ o -

XFPR1

-

EXFR2

H
EXFR3

DROF

C e W W e e W e e

ALIN

$011

EQU
MVI
CALL
MVI
JMF

SPACE -

ENT?
EXIT:

EQU
MVI
JMF

PRAGMATIC DESIGNS DEBUG MONITOR

$

C+CR
CONOUT
CsLF
CONOUT

PRINT SPACE

N/A
N/A

$
§al.
CONOUT

TYPE - TYPE MESSAGE ON CONSOLE

ENT?
EXIT?

EQU
MOV
MOV
CFI
RZ
CALL
INX
JMF

HL = FWA OF STRING (TERMINATE WITH OFFH)
N/A

$

CoM $ GET CHARACTER

AyC

OFFH $ TEST FOR LAST CHARACTER
$# RETURN IF DONE

CONOUT

H

TYFE $ GET NEXT CHARACTER

EXFPR1sy EXFR2y EXPR3 - INPUT FROM 1 - 3 PARAMETERS

ENT: N/A
EXIT:? VALUES RETURNED IN STACK
EQU $
MVUI Cel
JMF VALIN
EQU $
MUI Ce2
JMF VALIN
EQU $
MVI Cs3
INTO VALIN
VALIN - EVALUATE INPUT EXPRESSION
ENT? C = NUMBER OF PARAMETERS TO BE INPUT
EXIT? VALUES RETURNED ON STACK
EQU $
CALL ARIN $GET VALUE
XTHL $# GET RETURN ADDRESS OFF STACK
FUSH H $ PUT HL ON
-41-

s AIIr All PERIKYKSIFEFHS

/M MACRO ASSEM 2.0

)42B
)42C
Y42E
)431
Y433
Y436
V437
)43A

D43E
1K

13F

78
FE2C
CA3EO4
FEOD
c20303
on
C20303
c?

on
C22604
c3n303

210000

CDEEO3

47
Cne304
D8
29
29
29
29
BS

! 6F

0456
0456
ATD

J%60
046

0464
0465
0466
0467

3 £34504

2ACA04
ER
210008
3ACCOA4
B7
CAL504
29
19
2B
co

-

;
VAL IN1

D W e e @ @ e

A
-
=z

>

’
ARIN1

-

ARINZ

| ¢ > @€» W> W € @

TOF

< 9> @

$012 PRAGMATIC DESIGNS DEBUG MONITOR

MOV AsB

CPI ‘e’ $COMMA IS LEGAL DELIMITER
JzZ VALIN1 $PROCEED

CFI CR $CR => END INFUT

JINZ ERROR

DCR c $SEE IF REALLY LAST
JNZ ERROR #NO

RET

EQU $

DCR c

JNZ VALIN

JMF ERROR $TOO MANY PARAMETERS

ARIN - INPUT SINGLE 16 BIT NUMBER

ENT? N/A

EXIT? HL = 16 BIT VALUEs B = DELIMITER
EQU $

LXI HyO

EQU $

CALL CONIN

EQU $

MOV ByA $SAVE DELIMITER

CALL ASHEX $CONVERT INPUT TO HEX
RC

DAD H

DAD H

DAL H
DAD H
ORA L
MOV LsA
JMF ARIN1

LTOF - COMPUTE TOF ADDRESS OF DEM-1 BLOCK

ENT? N/A

EXIT? HL = TOF ADDRESS OF ELOCK
EQU $

LHLD OFFSET $GET BASE ADDRESS
XCHG $FLIF INTO DE

LXI Hy2048 $BLOCK SIZE IF NOT CHAINED
LA CHAINF $TEST FOR CHAINED
ORA A

JZ $+4 $0 => CHAINED

DAD H $HL = 4096

DAD D $ADD OFFSET

ncx H $FORM TOF - 1

RET

CMPHLDE - COMPARE HL WITH DE

-42-

(

J

L.J

)

'F/M MACRO ASSEM 2.0

G468
0468
(169
t Y6A
046K
~46C

461
044E
046F

470

471
va71
0472

475

0476
1476
V477

0478

N479
1474

047k

_0A47E
YA7F
J482
0483
“M486
2487

0484A
048A
—048C
048E
048F

7C
BS
37
C8
7R

7A
?C
c?

7C
Cn7604
70

FS
OF
OF
OF
OF
CIBAO4
4F
CDE103
Fi1
CDBAO4
4F
C3E103

E4OF
Cé690
27

CE40

a
’
a
y
’
-
y

c

MFHLIDE

[T ‘e ar ‘s ©> @ ‘@

ALR

DROF

‘ e W > W EF T W W

EYTE

T e e e @ e W

EXAS

>

$013

IF HL <
IF HL =
IF HL >

EQU
MOV
ORA
STC
RZ

MOV
SUE
MOV
SER
RET

PRAGMATIC DESIGNS DEBRUG MONITOR

DE THEN
DE THEN
DE THEN

ArH
L

AyE

Ay

CARRY = 0
CARRY = 0
CARRY = 1
TEST FOR
DE ~ HL»

HL = 0

SET/RESET CARRY

LADR - FRINT 16 BIT NUMBER ON CONSOLE

16 BIT NUMBER IN HL

ENT?

EXIT? N/A
EQU $

MOV AsH
CALL LBYTE
MOV AsL
INTO LEBYTE

FRINT MSE

-

»

FRINT LSE

LBRYTE - LIST A BYTE AS 2 ASCII CHARACTERS

ENT?
EXIT?

EQU
FUSH
RRC
RRC
RRC
RRC
CaL.L
MOV
CALL
FOF
CALL
MOV
JHF

HEXAS -

ENT:
EXIT?

EQU
ANI
AlI
DAA
ACI

A = 8 BIT HEX BYTE

N/A

$
FSW

HEXAS
CsA
CONOUT
FSW
HEXAS
CsA
CONOQUT

CONVERT

A = HEX

A = ASCII CHARACTER}»

$
OFH
90H

40H

SAVE A COFY OF

$MOVE ASCII
FPRINT

CH. TO

IAI

C

RETRIEVE ORIGINAL VALUE

CONVERT TO

$PRINT IT

ASCII

HEX NIEBRLE TO ASCII

NIBELEsy O-F

$REMOVE MSE

CEVYEERE1. FYFR e FXFMKAS = 1N'UB

rumi a2

30H-39Hy 41H-46H

T aed W FEENTUY Pl U B TV

P/M MACRO ASSEM 2.0

0491
0492

0493
0493
04995
0496
N497
o9
ER 7.
J49C
049D
.049LE

04A0

04Aa1
04C9
04CA
04CC
0ACD
0ACE
04100
0402
0404

27
c9

FE47
3F
ng
D630
ne
FEOA
3F
Do
Nn607
ce

D e wr W e @ e

SHEX

- er e

STACK?
OFFSET?
CHAINF?:
CFLAG:
DESTE?
STARTE?
ENDE:

$014

DAA
RET

ASHEX -

ENT?
EXIT:

EQU
CFI
CMC
RC

SuUI
RC

CFI
cMC
RNC
SUI
RET

ns
DS
Ds
ns
ns
ns
ns
ns
END

PRAGMATIC DESIGNS DEBUG MONITOR

CONVERT ASCII CHARACTER TO HEX

PRI P - = D

<

A = ASCII CHARACTER 30H-39H» 41H-46H
A = HEX NIBELEy» O - F

$

‘F'41 3 > F

‘0’ 5 <0

10 3 IF < 10y DONE

7 5SCALE A - F DOWN

RAM STORAGE (LOCATE IN ANY CONVENIENT PLACE)

#64 BYTE STACK

$OFFSET ADDRESS

$CHAIN FLAG

$5100/TARGET SYSTEM COMMAND FLAG
$ BLOCK MOVE DESTINATION

$BLOCK MOVE START

$BLOCK MOVE END

-44-

Appendix A

SCHEMATIC DIAGRAM

A-1

L I o) CO DD Y oMo eED),y o £) O G

Appendix B

ASSEMBLY DRAWING

B-1

i

i

ANIud¥ V31D 8°-HOOO0! "ON NO Q3LANINd

[

\

1IX%8

v-01-0000€0
wIEWNN DNIMYHa
ONIMYYA ATSWISSY T1-Waa
. ¥
aasiAzy WDKNV 6L/1/2 :3ava
A8 NMvia "ma\u>o v 13VYI8

*JNI “SN9IS3d T 1WW9VYd

IMS ‘€r

‘9¢ ,om ‘62 ‘G¢
.mN NN JN .oH
‘GT ‘v1 ‘11 4

g ¢p ‘€ 2 T suoi3edo| JI e SI3A0S

LiSTvL

8,61 @ |-Wga :1300W

. 8EASIVL 9 L
TONELeH | | [T
cnﬂ‘.- 3 4 “.“.A [H.ra

VSN NI 3GVW_ V-1000€0-1N8a N/d

VINHOSITVD ‘M NIVANNOW
"ONI mza_mwn ILVNOVHd
LARAS L I B J TIag o8 7

frvrrT
LT ° &

w i
(Z) 9SLZ/80LC

(1) 8522/80L4T

i

*
prnrrF

¥ 5 os X € &

STYNOIS dvHl

nua NIVHD >m_<m vt

er mcuu o Tms

suorjLsod pue

B-2

&

Appendix C

PARTS LIST

DRN DATE
CHKD DATE
A”DA ya " D”i/ PRAGMATIC DESIGNS, INC,
M BYZI é :p]; MOUNTAIN VIEW, CALIF,
ECO BY APP TITLE PART NUMBER
ECO BY APP DBM-1 DEBUG MEMORY BOARD 030000-05-A
Eco BY APP COMPONENT - product Family | NEXT ASSY SHEET 1 OF 2
! vem T o ety ngg}"G DESCRIPTION
; 030001-01-A | 1 P.C. Board v
{02 030002-09-A 1 DBM-1 Manual v’
03 1000 21,33 IC, Quad 2 Input NAND Gate #74LS00
04 1002 6,28 IC, Quad 2 Input NOR Gate #74LS02
05 1004 12,14, | IC, Hex Inverter #74LS04
, 34
06 1018 117 IC, Triple 3 Input NOR Gate #74LS27
07 1020 1135 IC, 8 Input NAND Gate #74LS30
08 1037 4 [13,20, | IC, Dual Type D Flip-Flop #74LS74
27,38
09 1058 1 |26 IC, Quad Tri-State Buffer #74L5126
10 1062 1 137 IC, 3-To-8 Line Decoder #74LS138
11 1071 3 {15, 22, 1C, Quad 2-To-1 Line Multiplexer #74LS157
) 29
12 1084 3 {17,24, | 1C, Quad D-Type Flip-Flop #74LS175
31
13 1113 4 {5,8,9, | IC, Quad 2 Input Exclusive-NOR Gate #7415266
10
14 1132 4 {11,18, | IC, Hex Bus Driver #74L5367
25,32
15 1202 1 |19 IC, Retriggerable One-Shot #74122
16 1502 4 116,23 IC, 4K RAM, 300ns, P2114-3 Static
30,36
17 1804 1133 IC, Voltage Reg, Positive 5V #7805
18 2600 19 |D1, Diode, Small Signal #1N4148
" D3-20
19 | 2603 1 |p2 LED, Red #RL4850
20 3000 13 |C Capacitor, .033uf, 25V Ceramic Disc
21 3300 1 |C1 Capacitor, 100uf, 25V Electrolytic
22 3500 3 {c2,3,6 | Capacitor, 2.2uf Tantalum
C-2

DRN

DATE

CHKD

DATE

APPD

YA

DAT%/Cﬁi

PRAGMATIC DESIGNS, INC.
MOUNTAIN VIEW, CALIF,

ECO BY 7 " |aPP
{ ECO BY APP TITLE PART NUMBER
ECO BY APP DBM-1 DEBUG MEMORY BOARD 030000-05-A
| Eco BY APP COMPONENT "product Family NEXT ASSY SHEET 2 OF 2
prsss giééﬁﬁzTC gty] aeE DESCRIPTION
23 | 4046A 1 | R2 Resistor, 82 Ohm 1/4W, 5% CF
{24 |4068A 1 | R7 Resistor, 680 Ohm 1/4W, 5% CF
25 | 4072A 3 | R3,4,5]| Resistor, 1K 1/4W, 5% CF
26 | 4087A 1 | R6 Resistor, 4.3K 1/4W, 5% CF
27 | 4096A 1 | Rl Resistor, 10K 1/4W, 5% CF
28 | 4700 2 | RN1,2 | Resistor Network #4310R-101-103
29 | 5004 4 Socket, 14 Pin Lowprofile IC T.I. #C84-14-02
30 | 5005 7 Socket, 16 Pin Lowprofile IC T.I. #C84-16-02
31 | 5006 4 Socket, 18 Pin Lowprofile IC T.I. #C84-18-02
32 | 5007 4 Socket, 24 Pin Lowprofile IC T.I. #C84-24-02
33 18011 1 Heat Sink #372B
34 | 5023 1 Strip, 1/9 x CA-S36RSP100-230(T)-090
35 | 5025 1 |S2 Switch, 5 Bit DIP CTS #206-5, Alco #DBS-5,
Amp #435640-3
36 |0 1 Nut, 4-40
37 |0 1 Screw, 4-40x1/4" Pan Head Cad Plated

c-3

iaggaaaaaiagg__rzh ~~~~~ ™ T B

Appendix D

If the Debug Memory is being multiplexed between several projects,
using different ROM sizes, and it is not desirable to have to access the
DIP switch, the switch SW2-D may be left CLOSED, and the 1K/2K select may

be performed with Bit 15 of the trap address word.

Bit 15 SW2-D ROM Size
/) Closed 1K
1 Closed 2K
P Open 2K
1 Open 2K

The software select of ROM size may be permanently defeated if
desired by cutting the P.C. trace of 128, Pin 8, and connecting IC28,

Pin 8 to Pin 9. SW2-D then exclusively selects ROM size.

SOFTWARE SELECT OF SW-2D — 1K/2K ROM

D-1

i

A

&&&&&

Appendix E

If the use of very long cables (>3 feet) is desired, or if the user's
target microcomputer ROM interface has 1ittle capacitive margin, the following

buffer board may be used at the target microcomputer ROM socket.

Target C DBM-1 ROM
ROM Socket 7415367 Socket
AD S AP
Al . Al
A2 P A2
A3 T A3
A4 T A
A5 < SO0 § s
A6 . A6
A7 o AN, A7
A8 {]]\f s A8
A9 N A9
(A1) |-— — — ‘H ————— (A1D)
DP <] D
D1 e 7 D?
D2 il D2
D3 T D3
D4 BN D4
D5 Th D5
D6 J{E\: D6
D7 D7
CE/TS I
o bl
GND GND

BUFFER BOARD

ﬂaa!aanﬂuagaaaaagaiuau_;%u_ihi

